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Abstract
This study synthesizes available information and esti-

mates the location and quantity of undiscovered copper associ-
ated with a late Permian bituminous shale, the Kupferschiefer, 
of the Southern Permian Basin in Europe. The purpose of 
this study is to (1) delineate permissive areas (tracts) where 
undiscovered reduced-facies sediment-hosted stratabound 
copper deposits could occur within 2.5 kilometers of the 
surface, (2) provide a database of known reduced-facies-type 
sediment-hosted stratabound copper deposits and significant 
prospects, and (3) provide probabilistic estimates of amounts 
of undiscovered copper that could be present within each tract. 
This assessment is a contribution to a global assessment con-
ducted by the U.S. Geological Survey (USGS).

Permissive tracts are delineated by mapping the extent 
of the Kupferschiefer that overlies reservoir-facies red beds of 
the lower Permian Rotliegend Group. More than 78 million 
metric tons (Mt) of copper have been produced or delineated 
as resources in the assessed tracts, with more than 90 percent 
of the known mineral endowment located in Poland. Mines 
in Poland are developing the deposit at depths ranging from 
about 500 to 1,400 meters.

Two approaches are used to estimate in-situ amounts of 
undiscovered copper. The three-part form of assessment was 
applied to the entire study area. In this approach, numbers 
of undiscovered deposits are estimated and combined with 
tonnage-grade models to probabilistically forecast the amount 
of undiscovered copper. For Poland, drill-hole data were 

available, and Gaussian geostatistical simulation techniques 
were used to probabilistically estimate the amount of undis-
covered copper. The assessment was done in September 2010 
using a three-part form of mineral resource assessment and in 
January 2012 using Gaussian geostatistical simulation.

Using the three-part form of assessment, a mean of 
126 Mt of undiscovered copper is predicted in 4 assessed 
permissive tracts. Seventy-five percent of the mean amount 
of undiscovered copper (96 Mt) is associated with a tract in 
southwest Poland. For this same permissive tract in Poland, 
Gaussian geostatistical simulation techniques indicate a mean 
of 62 Mt of copper based on copper surface-density data from 
drill holes.

Introduction
In response to growing demand for information about 

global mineral resources, the U.S. Geological Survey (USGS) 
led a global assessment of undiscovered copper resources 
(Briskey and others, 2001; Schulz and Briskey, 2003; Zientek 
and Hammarstrom, 2008; Hammarstrom and others, 2010). 
Undiscovered resources correspond to mineralized material 
whose location, grade, quality, and quantity are unknown or 
incompletely characterized, either in partially characterized 
sites or completely unknown mineral deposits. The global 
assessment studies use geoscience information to delineate 
tracts of land permissive for particular mineral deposit types 
(permissive tracts) and to probabilistically estimate the quan-
tity and quality1 of undiscovered resources.

Copper is found in many types of deposits that occur in 
diverse geologic associations. The USGS assessment effort 
focused on two deposit types that account for most of the cop-
per that has been discovered—porphyry copper and sediment-
hosted stratabound copper (SSC) (Singer, 1995). This report 

1 Grade or concentration of the metal or material of interest is a measure of 
quality of the undiscovered resource (Singer and Menzie, 2010).
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presents the results of an assessment of the Southern Permian 
Basin (SPB) in northern Europe for the occurrence of undis-
covered copper associated with reduced-facies-type SSC 
deposits (fig. 1).

SSC deposits consist of fine-grained, copper- and copper-
iron-sulfide minerals that form stratabound to stratiform 
disseminations in sedimentary rocks (Cox and others, 2003; 
Hitzman and others, 2005; Zientek, Hayes, and Hammarstrom, 
2013). The concentration of sulfide minerals conforms closely, 
but not exactly, with stratification in the host rocks. Ore 
minerals such as chalcocite and bornite occur as cements and 
replacements in the matrix of the sedimentary rocks and, less 
commonly, as veinlets. Deposits are characterized by system-
atic changes in ore mineralogy along and across bedding from 
pyrite to chalcopyrite to bornite to chalcocite to hematite.

Field and laboratory evidence indicates that SSC deposits 
formed from late diagenetic fluids generated during the com-
paction and lithification of sedimentary basins containing suc-
cessions of red beds and evaporites. The metal-bearing fluids 
are thought to be low-temperature, hematite-stable (oxidized), 
sulfate- and chloride-rich, and subsurface sedimentary brines. 
The primary cause of base-metal sulfide precipitation is reduc-
tion of sulfate in the brine by organic material.

Subtypes of SSC deposits are distinguished by host 
lithology and the nature of organic material in the sedimentary 
strata. The SSC mineralization in the SPB is an example of the 
reduced-facies subtype. Host beds for many reduced-facies 
deposits occur at or just above the flooding surface that marks 
the transgression of a marine depositional sequence over 
nonmarine red beds. The host rocks of reduced-facies-type 
deposits contain amorphous organic matter and finely dissemi-
nated pyrite. These host rocks overlie, or are locally interbed-
ded with, red to brown or purple, hematite-bearing sandstone, 
siltstone, and (or) conglomerate (red beds) deposited in an arid 
climate (Davidson, 1965; Rose, 1976; Kirkham, 1989).

Copper ores have been mined since the 1200s in what 
is now central Germany and southwestern Poland from a late 
Permian (Lopingian) unit called the Kupferschiefer [literally, 
the copper slate]. The Kupferschiefer (and its stratigraphic 
equivalents) is bituminous shale or marl about a meter thick 
that underlies an area of about 600,000 square kilometers 
(km2) in the SPB. Most copper production from the Kupfer-
schiefer before the 1950s was from central Germany. Mineral 
exploration studies have been conducted episodically since the 
1930s and ultimately led to the discovery of the world-class 
Lubin-Sieroszowice deposit (fig. 1) in southwestern Poland in 
the 1950s. Exploration continues in southwestern Poland and 
in eastern Germany, near the Polish border. Borg and others 
(2012) provide an up-to-date overview of the Kupferschiefer 
deposits in Europe.

In this study, two different approaches were used to 
assess undiscovered mineral resources. The first approach esti-
mates the number of undiscovered deposits. These estimates 
are combined with grade and tonnage models using Monte 
Carlo simulation to probabilistically forecast the amount of 
undiscovered copper. This approach has been widely used in 

USGS mineral resource assessments since the 1970s (Singer 
and Menzie, 2010). The second approach, Gaussian geosta-
tistical simulation (Vann and others, 2002; Esri, 2013a, b), 
uses drill-hole data and geostatistical methods to probabilisti-
cally estimate undiscovered mineral resources associated with 
incompletely explored extensions of stratabound ore deposits 
in southwestern Poland.

This document includes a brief geologic overview of 
the SPB and its SSC deposits, a description of the assessment 
process, and a summary of results. Appendixes provide addi-
tional information—appendix A introduces the scientists who 
participated in the panel that estimated numbers of undiscov-
ered deposits; appendix B describes the spatial data files that 
accompany this report.

Regional Setting and Context
The Kupferschiefer occurs in the SPB, which extends 

from the United Kingdom across the southern North Sea, 
northern Germany, and Poland to Lithuania (fig. 1). The length 
of the SPB is about 1,700 kilometers (km) and its width varies 
between 300 and 600 km (van Wees and others, 2000). The 
Rhenish and Bohemian Massifs2, which expose parts of the 
Variscan orogenic belt, define the southern margin of the SPB. 
To the north, the basin is bounded by the Mid North Sea High, 
Ringkøbing-Fyn High, and the Tornquist-Teisseyre Zone 
(fig. 1; Ziegler, 1990; van Wees and others, 2000; Littke and 
others, 2008; Gast and others, 2010).

The SPB is an intracontinental basin developed on the 
Variscan Orogen and its northern foreland (fig. 2). Variscan 
crustal shortening ceased towards the end of the Westphalian 
Stage, 314–313 millions of years before the present (Ma), 
and deposition of the lowermost units in the SPB began 
soon thereafter (Ziegler, 1990; van Wees and others, 2000; 
Narkiewicz, 2007; Geißler and others, 2008). The SPB over-
lies crustal domains belonging both to Baltica3 in the north 
and Gondwana4 in the south. The western and central parts 
of the SPB overlie Caledonian crust in the foreland of the 
external Variscan thrust belt. This foreland area includes the 
Anglo-Dutch and Pennine Basins, which contain as much as 
9,000 meters (m) of Carboniferous strata including thick coal 
deposits. The south-central parts of the basin are superimposed 
on the Variscan fold and thrust belt (the Rheno-Hercynian and 
Saxo-Thüringian Zones). The eastern parts of the basin subsided 
on a broad zone of Variscan foreland deformation and on the 
Precambrian East-European Craton (Baltica).

2A massive topographic and structural feature, especially in an orogenic 
belt, commonly formed of rocks more rigid than those of its surroundings 
(Neuendorf and others, 2005).

3A late Proterozoic to early Paleozoic continent that now includes the East 
European craton of northwestern Eurasia. 

4A Paleozoic to middle Mesozoic continent that now includes cratonic areas 
in landmasses of the Southern Hemisphere.
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Rotliegend Group

At the end of the Variscan Orogeny, Permo-Carboniferous 
wrench faulting, magmatism, thermal uplift, and lithospheric 
thinning led to the formation of the SPB (Ziegler, 1990; Wilson 
and others, 2004; Ziegler and others, 2004). The relative 
westward movement of the African Plate during the late stages 
of Permian collision with the European Plate formed west-
northwest to westerly trending, deep-seated, strike-slip faults 
and several transtensional pull-apart basins (Ziegler, 1990; 
Gast and others, 2010). This tectonic activity is associated 
with widespread, short-lived tholeiitic (bimodal) magmatism 
known as the European-northwest Africa LIP5 event (Ernst 
and Buchan, 2001; Heeremans and Faleide, 2004; Heeremans 
and others, 2004; Stollhofen and others, 2008; Gast and oth-
ers, 2010). The volcanic rocks range in composition from 
tholeiitic basalt to rhyolite and form large shield volcanoes 
and lava dome complexes (Geißler and others, 2008). The 
ages of the igneous rocks bracket the boundary between the 
Permian and Carboniferous Periods (Heeremans and Faleide, 
2004; Heeremans and others, 2004). These volcanic rocks and 
interbedded fluvial and lacustrine sedimentary strata make up 
the Permian Lower Rotliegend Subgroup, the lowermost unit 
in the SPB (fig. 3). Lower Rotliegend Subgroup igneous rocks 
are found in Denmark, Germany, Norway, Poland, Scotland, 
and Sweden. The largest volumes of volcanic rocks occur in 
the Northeast German Subbasin, the Polish Subbasin, the Oslo 
Graben, and the Horn Graben (fig. 4; Heeremans and Faleide, 
2004; Heeremans and others, 2004; Geißler and others, 2008; 
Gast and others, 2010).

A 20- to 30-million-year-long period of erosion, the 
Saalian Unconformity, followed the magmatic event (Glennie, 
1997a, b). Decay of the thermal anomaly related to the 
European-northwest Africa LIP event (Pharaoh and others, 
2010) or thermal relaxation of attenuated lithosphere that 
occurred during the early Permian and delayed infilling of 
paleo-topographic depressions that developed in the early 
Permian (van Wees and others, 2000) could have caused sub-
sidence that led to the final development of the SPB.

5Large igneous province.

Clastic sedimentation resumed towards the end of the 
early Permian in depressions in eastern Germany and Poland; 
this resumption is represented by rocks of the Upper Rotlieg-
end I Subgroup. In middle and late Permian times, sedimen-
tation expanded to the west and south, now represented by 
rocks of the Upper Rotliegend II Subgroup. Upper Rotliegend 
II strata extend east-west from Poland to west England and 
north-south from the German-Danish border to northeast of 
Frankfurt, Germany.

During the Permian, the SPB area was located in the 
Northern Hemisphere desert belt between about 10 and 30° N. 
(Glennie, 1997a, b; Gast and others, 2010). The Upper Rotli-
egend II Subgroup is made up of four distinctive facies asso-
ciations, characteristic of deposition in fluvial (wadi), aeolian, 
sabkha, and lacustrine environments in a land-locked basin 
(fig. 4; Stollhofen and others, 2008). The central part of the 
basin was occupied by terminal playas and saline lakes where 
rock salt (halite) was deposited. South of the lakes, transverse 
dunes derived from fluvial sands and transported by northeast 
trade winds are preserved (Gast and others, 2010).

Zechstein Group

In late Permian (Lopingian) time, a catastrophic trans-
gression from the Barents Sea inundated the SPB and 
inundated the Permian continental basin with marine water 
(Glennie, 1997a, b; Brauns and others, 2003; Geluk, 2005; 
Stollhofen and others, 2008; Gast and others, 2010). The trans-
gression is associated with a global rise in sea level due to the 
melting of the Gondwana ice cap and (or) regional lithospheric 
doming associated with rifting in the Arctic North Atlantic 
region (Glennie, 1997a, b; Stollhofen and others, 2008). The 
rapid flooding suggests that the Permian continental basin was 
significantly below sea level (Gast and others, 2010). During 
the initial transgression, the topmost parts of the Rotliegend 
dune sands were reworked to form the Weissliegend sandstone 
(fig. 5). This flooding event rapidly changed the deposition 
conditions of the sediments from oxidized to reducing. The 
catastrophic Messinian flooding of the Mediterranean would 
be analogous to Zechstein transgression (Garcia-Castellanos 
and others, 2009).
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The Kupferschiefer is the first unit deposited after the 
transgression and forms the base of the Zechstein Group 
(fig. 5). The Zechstein Group is divided into cycles reflecting 
progressive evaporation and chemical precipitation in a giant 
saline basin (fig. 3; Peryt and others, 2010). Marine sediments 
(marls or limestone) form the base of each cycle and are 
overlain by layers of evaporites such as anhydrite and halite. 
Four evaporitic cycles (Z1-Werra, Z2-Stassfurt, Z3-Leine, 
and Z4-Aller) are found throughout the basin; younger cycles 
(Ohre-Z5, Friesland-Z6, and Fulda-Z7) are recognized in the 
axial parts of the Anglo-Dutch Basin (fig. 2) and Northeast 
German Subbasin (fig. 1; Geluk, 2005; Peryt and others, 
2010).

The Kupferschiefer is an organic-rich unit usually less 
than a meter thick and consists of laminated black mud-
stones, marls, and carbonates that were deposited well below 
wave base in water depths of 200 m or more in depocenters 
(fig. 5; Ziegler, 1990; Paul, 2006; Stollhofen and others, 
2008) and within storm wave base in the perilittoral zone 
(Oszczepalski and Rydzewski, 1987). The Kupferschiefer 
is one of the principal time markers in northwest European 

stratigraphy, having a Re-Os date of 257.3±1.6 Ma (Brauns 
and others, 2003), consistent with the occurrences of the 
Wuchiapingian-age conodont, Mesogondolella britannica, 
in Kupferschiefer equivalent strata in the southern North Sea 
(Stollhofen and others, 2008). Most of the Kupferschiefer was 
deposited under anoxic conditions in a stratified sea. Three 
cycles with varying carbonate and total organic carbon (TOC) 
contents can be traced throughout the basin (Paul, 2006). A 
fossiliferous carbonate bed, called the Mutterflöz in Germany, 
occurs on swells and marginal areas below the typical black 
shale facies (Paul, 2006). It is time equivalent with the lower 
part of the Kupferschiefer in basinal sites and therefore part 
of the Kupferschiefer. The Kupferschiefer is also known as 
the Marl Slate in the United Kingdom (Hirst and Dunham, 
1963), the Coppershale Member of the Z1 (Werra) Formation 
in the Netherlands (Van Adrichem Boogaert and Kouwe, 
1993–1997), łupek miedzionośny (an informal unit) in Poland 
(Marcinowski, 2004), the middle subformation of Murav’ev 
Formation in Russia (Zagorodnykh, 2000), and the Sasnava 
Series in Lithuania (Peryt and others, 2010).
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Mesozoic rifting and latest Cretaceous and Paleocene 
basin inversion tectonics affected parts of the SPB. The struc-
tures observed today in the Northern and Southern Permian 
Basins evolved at four different times (Kley and others, 2008). 
The first is transtension in latest Carboniferous to Permian 
time (described above.). The second stage involves two dis-
crete periods of extension in the Mesozoic, beginning in Early 
to Late Triassic time and subsequently in Late Jurassic to early 
Late Cretaceous time. The third stage involves contraction and 
inversion in latest Cretaceous to late Oligocene time related to 
the formation of the Alpine Orogen6. Some of the Mesozoic 
extensional fault systems were reactivated as reverse faults. 
In particular, many of the basement massifs that bound areas 
underlain by the Kupferschiefer were uplifted during the 
Alpine Orogeny. The fourth stage is the counterclockwise rota-
tion of the major horizontal stress from a northeast-southwest 
to a northwest-southeast direction between the late Eocene and 
middle Miocene.

Mineralization
Large areas of the Kupferschiefer contain moderate 

concentrations of base and precious metals that are similar 
to other black shales and marls worldwide; however, high 
concentrations of copper, lead, zinc, silver, and other precious 
metals are found locally (Wedepohl and others, 1978, Vaughan 
and others, 1989; Oszczepalski and Rydzewski, 1997b; Rentzsch 
and Franzke, 1997; Paul, 2006). For example, copper concen-
trations higher than 3,000 parts per million (ppm) may occur 
in as much as one percent of the total area underlain by the 
Kupferschiefer (Wedepohl and others 1978).

Vaughan and others (1989) distinguish four styles of 
mineralization in the Kupferschiefer. The first is synsedimen-
tary mineralization in which the average base-metal content 
is approximately 100 ppm. The second is early diagenetic 
mineralization, with sulfur derived from bacteriogenic 
processes and metals derived from immediately underlying 
rocks. The average base-metal content is about 2,000 ppm. 
The third is ore mineralization where the average base-metal 
concentration reaches approximately 3 percent. In these 
rocks, the ore minerals occur primarily as fine disseminations 
(less than 50 micrometers (μm) in diameter). Less common 
ore types include coarse-grained aggregates, lenses, streaks, 
and veinlets of sulfide minerals. The mineralization is late 
diagenetic and related to introduction of oxidized metal-rich 
brines at temperatures of approximately 130 degrees Celsius 
(ºC) (Jowett, 1986; Oszczepalski, 1989; Bechtel and Hoernes, 
1993; Bechtel and others, 1996; Sun and others, 1995; Sun and 
Püttmann, 1997; Karnkowski, 1999; Bechtel and others, 2001; 
Blundell and others, 2003; Oszczepalski and others, 2002; 
and Speczik and others, 2003). Ore mineralization is generally 
restricted to those parts of the Kupferschiefer that are near the 

6The Alpine Orogen formed the Alps of Europe during the Eocene through 
Miocene Periods.

margins of Rotliegend basins. Sulfur isotope data indicates 
fixation of the metals by sulfur derived from bacterial reduc-
tion of sulfate. The fourth mineralization style associated 
with the Kupferschiefer is postdiagenetic, structure-controlled 
(Rücken-type) mineralization characterized by the presence 
of cobalt, nickel, and silver arsenide minerals. It appears 
to be genetically distinct from the other three types and is 
much younger, associated with Alpine-Carpathian tectonism 
(Wagner and Lorenz, 2002; Hitzman and others, 2005).

Sulfide mineralization found near the base of the Zech-
stein sequence is not restricted to the Kupferschiefer layer. 
Sulfide mineralization also occurs in clastic rocks underlying 
the Kupferschiefer (Zechstein conglomerate and Rotliegend 
strata) and in overlying Werra carbonate rocks (the Zechsteinkalk 
in Germany or wapień cechsztyński in Poland). In medieval 
times, only the Kupferschiefer shale bed itself was typically 
mined and the ore often averaged more than 5 percent copper 
(Paul, 2006). However, the zone of economic mineralization 
transgresses all three stratigraphic units at very low angles, 
allowing various rock types to be economically mined today. 
For example, in operating mines in Poland, approximately 
12 percent of copper occurs in the Kupferschiefer, 57 percent 
in the underlying Rotliegend Group sandstone, and 31 percent 
in the overlying Zechstein Group limestone (KGHM (Copper 
Smelting-Mining Combine) Polska Miedź S.A. [KGHM], 
2012). The thickness of the ore-bearing zone ranges from a 
few centimeters to 9 m in Germany (Rentzsch and Franzke, 
1997) and locally exceeds 88 m in Poland (Oszczepalski and 
Rydzewski, 1997b). In the Lubin-Sieroszowice deposit, the 
thickness of the copper-rich sequence typically varies between 
10 and 60 m; the maximum thickness is 25 m at Konrad 
and 10 m at Nowy Kościół (see fig. 1 for mine locations; 
Oszczepalski and Rydzewski, 1997b).

Mineral and Metal Zonation

In SSC deposits, ore minerals are distributed in patterns 
in and adjacent to ore bodies that can be used to infer the flow 
path of the metal-bearing solutions and the locations of the 
reaction front where mineral precipitation took place. For the 
Kupferschiefer, the change from oxidized (hematite-stable, 
organic-poor) to reduced (pyrite-stable, organic-rich) mineral 
assemblages shows where upwelling hematite-stable, oxidized 
copper-bearing brines interacted with the organic-rich host 
rocks. In this ore system, the Kupferschiefer bed is both the 
trap for the metals and the seal confining fluid flow.

For the Kupferschiefer, high-grade copper mineralization 
is always associated with barren, red-colored rocks found in 
the vicinity of the ore (fig. 6). The red-colored rocks were first 
observed in the “Fäule” layer near the base of the Zechstein 
Limestone; miners later referred to all barren, red-colored 
rocks of the Weissliegend, Kupferschiefer, and Zechsteinkalk 
as “Rote Fäule” (English translation “red rot”; Rentzsch, 
1974; Jung and Knitzschke, 1976). The largest lateral extent of 
oxidized sedimentary rocks is observed within the Weisslieg-
end Group sandstones, then within the Basal Limestone and 
Kupferschiefer, and limited in the overlying Zechstein Group 
limestone (Oszczepalski and Rydzewski, 1997b).
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Freiesleben (1815) was the first to scientifically describe 
the Rote Fäule but did not recognize its relation to ore. Gillitzer 
(1936) was the first to suggest a causal relation between 
the presence of Rote Fäule alteration and the distribution of 
high-grade copper and distal lead-zinc mineralization in the 
Kupferschiefer. Since that time, locating the contact between 
the oxidized and reduced facies of the Kupferschiefer has 
been an important guide to the location of copper ore bodies 
(Rentzsch, 1974; Oszczepalski and Rydzewski, 1997b).

The red color of the rocks is caused by disseminated 
hematite and goethite and indicates alteration related to 
interaction of the oxidized ore fluids with sedimentary rocks 
(Oszczepalski, 1989; Püttmann and others, 1989; Vaughan and 
others, 1989). The transition from hematitic to sulfidic sedi-
mentary rocks is characterized by a gradual change in color 
from reddish-brown, through grey with red spots or layers, to 
dark grey and black. This change in color is accompanied by 
an increase in the organic carbon content of the rocks. Organic 
carbon is depleted in the Rote Fäule relative to the original 
sulfidic, organic-rich sedimentary rocks. In the reaction zone, 
the oxide and sulfide minerals in the Kupferschiefer mineral 
system grade from (1) hematite with only scant traces of any 
sulfides (Rote Fäule); to (2) covellite with idaite, chalcopyrite, 
and trace magnetite; to (3) chalcocite with digenite, covellite, 
and pyrite; to (4) chalcocite with bornite, digenite, and pyrite; 
to (5) bornite with chalcocite, chalcopyrite, sphalerite, galena, 
and pyrite; to (6) bornite with chalcopyrite, pyrite, sphalerite, 
and galena; to (7) chalcopyrite and pyrite with sphalerite, 
galena, and tennantite; to (8) pyrite, sphalerite, galena, and 
chalcopyrite; to (9) pyrite, sphalerite, and galena with chalco-
pyrite; to (10) pyrite with only scant traces of any base-metal 
sulfides (Jung and Knitzschke, 1976). Paragenetic studies 
indicate that base-metal sulfide deposition postdated pyrite 
formation, that sulfur-poor minerals (such as chalcocite) 
progressively replaced sulfur-rich minerals (bornite, chalcopy-
rite), and that hematite replaced both the copper sulfides and 
pyrite (Oszczepalski, 1994).

The zoned distribution pattern of sulfide minerals gives 
rise to a zoned pattern of metal distribution ranging from 
a zone devoid of base metals (1 above), to a copper zone 
(2 through 6 above); to a lead zone (7 above); to zinc zone 
(8 above); and finally, to another zone nearly devoid of 
base metals (10 above) (fig. 7; Jung and Knitzschke, 1976; 
Oszczepalski and Rydzewski, 1997b). Ore grades of copper 
(typically greater than 1 percent) are developed only in zones 
that have chalcocite, covellite, or bornite as the predominant 
sulfide mineral.

Metal Surface Density

Metal surface density7, usually in units of kilograms per 
square meter (kg/m2), is commonly used to describe variation 
in the metal yield or content of the Kupferschiefer. This con-

7Surface density is the quantity per unit area of anything (such as mass or 
electricity) distributed over a surface (National Research Council Conference 
on Glossary of Terms in Nuclear Science and Technology, 1957; Neuendorf 
and others, 2005).

vention, which ignores the vertical dimension, is appropriate 
because (1) the ore bodies are stratabound in a gently dipping 
host unit with a large areal extent (the shape of the Kupfer-
schiefer ore bodies can be approximated by a planar surface), 
and (2) the thicknesses of the ore bodies are insignificant 
compared to their areal extent (see Wellmer and others, 2008, 
p. 38, and Noble,1992, for discussions of resource estimation 
for stratiform ore bodies). Other terms that are synonymous 
with copper surface density (CSD) include “copper per unit 
area of lode” (Butler and Burbank, 1929); “Kupferinhalt je qm 
Flözfläche” [Copper content per square meter of surface seam] 
(Gillitzer, 1936); “kupferführung” [copper guide] (Eisentraut, 
1939); “Kupfergehalt des Flözes” [copper content of the seam] 
(Richter, 1941; Kautzsch, 1942); “zasobność miedzi” [abun-
dance of copper, or copper productivity] (Oszczepalski and 
Rydzewski, 1983); and “accumulation index” (Piestrzyński 
and Pieczonka, 2012).

Metal surface density can be calculated using the 
contained metal content of ore bodies and the surface projec-
tion of their area or by using information for profiles through 
the mineralized interval as sampled in outcrop, underground 
workings, or drill holes. Data from point locations (such as 
drill holes) can be contoured or gridded and used to estimate 
contained metal. Area multiplied by the estimated metal 
surface density for the area yields an estimate of the contained 
metal.

For profile data (such as drill holes), Oszczepalski and 
Rydzewski (1997b) define metal surface density as:

Q = 0.001MPC,

where 
	 Q 	 is the metal surface density (in kilograms per 

square meter) of a mineralized interval,
	 M 	 is the thickness (in meters),
	 P 	 is the average metal concentration (in grams 

per metric ton), and
	 C 	 is the bulk density (in metric tons per 

cubic meter) 

Metal surface density is calculated for continuously 
sampled profiles and weighted averages are used to calculate 
the metal surface density for the entire mineralized interval.

What are representative numbers for copper surface 
density in the Kupferschiefer region? Cutoff criteria for bal-
ance reserves8 include grade cutoff of 0.7 percent copper, 
minimum copper equivalent9 in sample composite of 0.7, 
and minimum yield (copper metal per unit area) of 50 kg/m2 
(Bartlett and others, 2013). Drill holes in sections through 
the Sieroszowice and Rudna Mines have CSD values ranging 

8In the mineral resource classification system used by former COMECON 
(Council for Mutual Economic Assistance) countries during the Soviet era, 
balance reserves are those that are economic (Jakubiak and Smakowski, 
1994)..

9Copper equivalent is Cu(%) + Ag(g/t)/100.
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from 7 to 413 kg/m2 (fig. 8; Pieczonka and others, 2001). Ore 
intercepts with copper surface-density values of 50 kg/m2 are 
considered to be economic in Poland when there is a minimum 
of 1.7 percent copper in the “interval of the extracted wall” 
using a cutoff grade of 0.7 percent copper (Bartlett and others, 
2013).10 Oszczepalski and Speczik (2011) use a cutoff of 
35 kg/m2 to estimate prognostic (undiscovered) resources 
in Poland. The overall copper surface density for ore bodies 
in the Mansfeld and Sangerhausen areas is estimated to be 
19.6 kg/m2 (Knitzschke, 1995). Using surface area calculated 
with a geographic information system (GIS) and the contained 
copper of ore bodies, overall copper surface-density values for 
other reduced-facies-type deposits range from 60 to 260 kg/m2 
(table 1).

Regional Maps of Mineral and Metal Zones and 
Copper Surface Density

Regional mineral- and metal-zonation maps of mineral 
proportions and metal zones, as well as metal surface density, 
were compiled into a spatial (GIS) dataset to support the 
mineral resource assessment. The sources of information 
include metal surface-density maps for Germany based on 
1,082 underground and surface exposures, as well as bore-
holes (Rentzsch and Franzke, 1997), and a corresponding 
mineral-zonation map, which shows about 270 drill-hole 
collar locations (Rentzsch and others, 1997). Ten thousand 
samples were used to delimit and calculate the metal contents 
of the Kupferschiefer ore zone on these maps. The mineral-
ized interval is defined as the Kupferschiefer and the rocks 
in its hanging wall and footwall, provided they have metal 
values exceeding 0.1 percent copper, lead, or zinc. For Poland, 
the GIS incorporates the data in the metallogenic atlas of the 
Zechstein copper-bearing series, which is based on 774 bore-
holes and the chemical analyses of more than 50,000 samples 
(Oszczepalski and Rydzewski, 1997b). Metal surface density 
was calculated for continuously sampled profiles where the 
combined concentration of copper, lead, and zinc in individual 
samples is equal to or greater than 0.1 percent. The compila-
tion also includes recent studies focused on southwestern 
Poland that are based on petrographic and analytical studies 
on more than 1,400 drill holes; only intervals with samples 
that contained in excess of 0.7 percent copper were used to 
calculate copper surface density (Oszczepalski and Speczik, 
2011). In addition, the compilation incorporates small copper 

10 Since 2012, the values used to define the deposit and its boundaries 
have changed to cut off of 0.5 percent copper, minimum copper equivalent in 
sample composite of 0.5, and minimum yield (copper metal per unit area) of 
35 kg/m2.

surface-density maps published by Schmidt and others (1986); 
Federal Institute for Geosciences and Natural Resources 
(1993); Geological Office of the Saxony-Anhalt Mining area 
(2000); Stedingk and Rentzsch (2003); Liedtke and Vasters 
(2008); and Volker Spieth (written commun., 2008).

Mineral-zonation maps based on the petrographic study 
of drill core show the zoned distribution of sulfide and oxide 
minerals in and near the Kupferschiefer (figs. 7 and 8). For 
example, Rentzsch and others (1997) describe 10 mineral 
associations, which they display on their map. Oszczepalski 
and Rydzewski (1997b) and Oszczepalski and Speczik (2011) 
map 8 and 6 mineral zones, respectively (table 2). These maps 
were also compiled in order to assess undiscovered resources.

To interpret the metal surface-density and mineral-zonation 
maps, GIS data that showed the surface extent of known ore 
bodies, the location of mineral occurrences, and mining leases 
and concession areas were compiled. Many of the known 
occurrences are either old mine workings or drill holes with 
mineralized intercepts. Spatial data files for metal surface 
density, mineral zones, ore bodies, leases and concessions, 
permissive tracts, and mineral occurrences are included with 
this report and are summarized in appendix B.

Mineralization Age

The accepted depositional age of the Kupferschiefer is 
from 260.4 to 258 Ma (Re-Os date; Menning and others, 2006; 
Słowakiewicz and others, 2009). Brauns and others (2003) 
reported a whole-rock and mineral-separate isochron from 
several samples from the Sangerhausen deposit that gives a 
Re-Os date of 257±1.6 Ma. The data presented by Brauns and 
others (2003) were based on one drill core from the Sanger-
hausen area and were obtained from unspecified sulfide miner-
als (Słowakiewicz and others, 2009). Nevertheless, Menning 
and others (2006) and many other authors accept the precise 
date reported by Brauns and others (2003) as a depositional 
age for the base of the Zechstein Group. Six samples of non-
mineralized black shale from a Kupferschiefer section in the 
northern part of the Polish Zechstein Basin yield a Re-Os date 
of 247±20 Ma (Pašava and others, 2010). Pašava and others 
(2007) reported a Re-Os date of 240±3.8 Ma from mineral-
ized, copper-rich Kupferschiefer whole-rock samples of the 
Lubin Mine. Pätzold and others (2002) obtained a Re-Os date 
of 204.3±0.5 Ma for copper-sulfide mineralization associated 
with the Kupferschiefer at Mansfeld. The younger ages at 
Lubin and Mansfeld are consistent with an epigenetic origin of 
the Kupferschiefer mineralization (fig. 9).
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Table 1.  Average copper surface density (CSD) values for selected flat-lying reduced-facies sediment-hosted stratabound copper 
deposits.

[km2, square kilometers; kg/m2, kilogram per meter squared]

Deposit name Basin Country
Ore body area

(km2)

Contained 
copper metal 
(metric tons)

CSD  
(kg/m2)

Reference for contained copper

Spremberg Southern Permian 
Basin

Germany 9.90 617,400 62 Kopp and others (2006)

Boleo Santa Rosalia Mexico 33.61 2,580,772 77 Dreisinger and others (2010)
Graustein Southern Permian 

Basin
Germany 8.26 868,320 105 Kopp and others (2006)

Lubin-Sieroszowice Southern Permian 
Basin

Poland 375.17 72,000,000 197 Kirkham and Broughton 
(2005); Polish Geological 
Institute–National Research 
Institute (2009a, b); Lattanzi 
and others (1997); Wodzicki 
and Piestrzyński (1994)

White Pine Keweenawan United 
States

32.25 8,256,000 256 Kirkham and others (1994)

Table 2.  Correlation of mineral- and metal-zone mapping for the Kupferschiefer in the Southern Permian Basin, Germany and Poland.

[Pyrite includes marcasite; RF, Rote Fäule; Cu, copper; Pb, lead; Zn, zinc; Fe, iron]

Mineral-zone mapped
Metal typeRentzsch, Franzke, and Friedrich (1997) Oszczepalski and Rydzewski 

(1997a)
Oszczepalski and Speczik (2011)

Hematite-type Rote Fäule facies (paragenesis 1) Oxidized area (Rote Fäule) Extent of the oxidized zone in the 
shale-carbonate Pz1 series;
Extent of the oxidized zone in the 
White Sandstone (Weissliegend)

RF

Covellite-idaite-type (association 2);
Chalcocite-type (association 3);
Bornite-chalcocite-type (association 4);
Bornite-type (association 5);
Bornite-chalcopyrite-type (association 6);
Chalcopyrite-(tennantite)-pyrite-type  
(association 7a)

Chalcocite-covellite  
mineralization; 
Chalcocite-bornite  
(chalcopyrite)  
mineralization

Copper-bearing zone Cu

Chalcopyrite-galena-type (association 8a); 
galena-type (association 9a)

Galena-sphalerite-pyrite  
(chalcopyrite) mineralization

Lead-bearing  zone Pb

Chalcopyrite-sphalerite-type; (association 8b); 
sphalerite-type (association 9b)

Sphalerite-galena-pyrite  
(chalcopyrite) mineralization

Zinc-bearing zone Zn

Pyrite-type (association 10) with chalcopyrite, 
galena, sphalerite, bornite, or chalcocite

Pyrite-chalcopyrite-sphalerite 
(galena) mineralization;
Pyrite-sphalerite-galena  
(chalcopyrite) mineralization; 
Pyrite mineralization

Pyrite zone Fe, (Cu), 
(Pb), or (Zn)
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These ages can be compared with dates for alteration 
associated with the mineralization and with the Rote Fäule 
(fig. 9). Bechtel and others (1996) indirectly dated Kupferschiefer 
mineralization using K-Ar on illite from Kupferschiefer 
shale samples taken from barren pyrite zone, zinc-lead zone, 
copper-zinc-lead zone, copper zone, and Rote Fäule. Initial 
results indicated a Middle Triassic age. Bechtel and oth-
ers (1999) refined the illite K-Ar ages using illite polytypes 
of probable diagenetic, authigenic origin from mineralized 
samples. Results varied from 216 to 190 Ma (Late Triassic 
to Early Jurassic). The paleomagnetic dating of Rote Fäule 
hematite initially yielded dates of 250 to 220 Ma, which were 
later refined to 255 to 245 Ma by Nawrocki (2000) based on 
improved polar wandering paths. Recent paleomagnetic age 
dating of pyrrhotite and magnetite mineralization at Sang-
erhausen has revealed late epigenetic ages of 149 or 53 Ma 
(Symons and others, 2011).

The various ages record a series of events distributed 
along the time-depth burial path for the Kupferschiefer, 
including mineralization and alteration (fig. 10). After deposi-
tion at 260 to 258 Ma, the Kupferschiefer was rapidly buried 
to depths of 1.5 km by 240 Ma (Middle Triassic). Rates of 
burial then apparently slowed until depths of 2.5 to 3 km were 
reached about 150 Ma (Upper Jurassic). This burial history is 
consistent with the extensional tectonic phases described by 
Kley and others (2008) for the SPB.

Mineral Resource Nomenclature
Scientific terminology for identified (discovered) mineral 

resources follows the usage proposed by Committee for 
Mineral Reserves and Reporting Standards (2006). “Mineral 
resources” are defined as concentrations or occurrences of 
material of economic interest in or on the Earth’s crust in 
such form, quality, and quantity that there exist reasonable 
prospects for eventual economic extraction. The location, 
quantity, grade, continuity, and other geological characteristics 
of a mineral resource are known, estimated, or interpreted 
from specific geological evidence, sampling, and other knowl-
edge. The term “mineral reserve” is restricted to the economi-
cally mineable part of a mineral resource.

In this report, an “undiscovered mineral resource” estimate 
is considered to be mineralized rock that is likely to be pres-
ent but for which location, grade, quality, and quantity are 
not constrained by specific geologic evidence. The estimates 
can refer to completely undiscovered deposits or to exten-
sions of areas with known, drill-indicated resources. Some 
geologic information could be available for these exten-
sions, but it is not sufficient to meet the requirements for 
defining (1) inferred mineral resources using the guidelines 
published by Committee for Mineral Reserves International 
Reporting Standards (2006) or (2) category C resources in 
the classification scheme used by many former COMECON 
(Sovet Ekonomicheskoy Vzaimopomoshchi [Council for 
Mutual Economic Assistance]) countries during the Soviet era 

(Diatchkov, 1994; Jakubiak and Smakowski, 1994; Henley 
and Young, 2009). The COMECON system has a prognostic 
or “P” category. Resources listed as prognostic are generally 
equivalent to undiscovered resources in the classification of 
mineral resources used by the USGS (U.S. Bureau of Mines 
and U.S. Geological Survey, 1976). Resources within the P1 
category may be adjacent to and extend beyond the limits of 
drill-indicated resources (category C). Resources under the 
P2 category are estimated using geophysical and geochemi-
cal data (Diatchkov, 1994). In Poland, the prognostic resource 
categories P1 and P2 are referred to as D1 and D2 (Jakubiak 
and Smakowski, 1994).

Assessment Methodology Concepts
U.S. Geological Survey (USGS) mineral resource assess-

ments address two basic questions: (1) where are undiscovered 
mineral resources likely to exist, and (2) how much undiscov-
ered mineral resource could be present? Results are presented 
as maps and as a frequency distribution of in-place, undiscov-
ered metal. We can make inferences about undiscovered min-
eral resource potential because natural accumulations of useful 
minerals or rocks (“mineral deposits”) can be classified into 
groups or “deposit types” that reflect processes of formation. 
Using the deposit-type paradigm, we can predict the geologic 
settings in which various types of deposits could be found, 
as well as anticipate the distribution and concentration of ore 
materials at the scale of the deposit.

The concepts of deposit type and ore genesis underlie 
geologically based mineral resource assessments. Two genetic 
concepts have been proposed for the origin of SSC deposits: 
(1) syngenesis, in which the mineralization developed 
simultaneously with the deposition of the sediments, and 
(2) diagenesis, in which the mineralization formed later than 
the deposition of the sediments during compaction and lith-
ification. After decades of research, the diagenetic model of 
ore formation is now widely accepted and forms the basis for 
establishing assessment criteria.

The concept of a mineral system is used to translate 
theories of regional ore genesis into criteria that can be used 
in mineral resource assessment and exploration targeting stud-
ies (Wyborn and others, 1994; Knox-Robinson and Wyborn, 
1997; Cox and others, 2003; Hronsky, 2004; Hitzman and 
others, 2005; Barnicoat, 2006; Hronsky and Groves, 2008; 
Blewett and others, 2010). For example, hydrothermal ore 
deposits can be understood by considering the source of the 
ore-forming fluid, its physical and chemical character, the 
mechanisms for dissolving and transporting ore-forming com-
ponents, and the causes of precipitation from it (Skinner and 
Barton, 1973). Sites with appropriate combinations of struc-
tural, chemical, and physical conditions that force ore-mineral 
precipitation reactions are called ore traps (Reed, 1997). Varia-
tions of the source-transport-trap paradigm are used to define 
both petroleum and hydrothermal mineral-systems models 
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(Magoon and Dow, 1994; Wyborn and others, 1994; Magoon 
and Schmoker, 2000).

The formation of SSC deposits requires a source of 
metals, a fluid that extracts and moves metals away from the 
source rocks, a pathway that allows the movement of these 
ore-bearing fluids, and a physical and redox chemical trap that 
fixes metals in an ore body (table 3; Taylor, 2000; Hitzman 
and others, 2005; Hayes and others, in press). The timing of 
the processes that control fluid generation, migration, storage, 
and preservation is crucial; if a single system component or 
process is missing or occurs out of order, the copper deposits 
cannot form (Magoon and Dow, 1994; Kreuzer and others, 
2008; McCuaig and others, 2010).

Essential mineral-system components for assessing 
SSC deposits include (1) permeable red-bed rocks juxta-
posed against strata that contain reductants (typically organic 
material and earliest diagenetic pyrite), (2) basin history that 
indicates that the rocks experienced burial diagenesis (depths 
of 1 to 5 km at temperatures ranging from 70 to 220 °C), and 
(3) subsurface water that is enriched in copper. The lithostrati-
graphic relations in the first component are used to delineate 
areas where reduced-facies-type copper mineralization could 
occur. The second component is necessary because sediment-
hosted copper ore fluids will not develop unless the sediments 
undergo burial diagenesis. The third component is crucial—we 
use direct evidence for the presence of copper-bearing ore flu-
ids to constrain the probable amounts of undiscovered copper 
resources because rocks with the appropriate lithostratigraphic 
relations can undergo burial diagenesis without developing 
subsurface water enriched in copper.

Mineral Resource Assessment—
Delineating Permissive Tracts

Geographic areas are defined where undiscovered 
mineral resources could be present. These areas, or “permis-
sive tracts,” represent the surface projection of that part of the 
Earth’s crust down to a specified depth where undiscovered 
mineral resources could be present. Areas are excluded from 
these tracts only on the basis of geology, knowledge about 
unsuccessful exploration, or the presence of barren overburden 
exceeding some specified thickness (Singer and Menzie, 
2010). No areas are removed because of ownership or use of 
the land. The criteria used to select the permissive volume of 
rock, or assessment unit, are provided by descriptive mineral 
deposit and mineral-systems models.

Lithostratigraphy consistent with the reduced-facies 
deposit and mineral-system models is used to delineate the 
permissive tract. The tract is defined by the stratigraphic 
interval that separates a porous flow unit (reservoir-facies red 
beds of the Rotliegend) from the overlying ore trap and seal 
(the base of the Zechstein, which includes the ore trap, the 
Kupferschiefer, and regional sealing strata, the Kupferschiefer 
and the overlying evaporites). This stratigraphic interval is 
mapped to a depth of 2,500 m below the surface; the sub-
surface body (volume) vertically projected to the surface is 
the permissive tract. The assessment depth of 2,500 m was 
selected because it is a kilometer below the deepest mine 
workings on the Kupferschiefer; at this depth, the virgin rock 
temperatures are likely to be 80–90 ºC (Górecki, 2006). Based 

Table 3.  Various schemes to describe the components of mineral-ore systems that form sediment-hosted stratabound copper 
deposits.

Schemes for mineral-ore system

Mineral system Sediment-hosted stratabound-copper mineral system

Wyborn and others (1994) Cox and others (2003) Hitzman and others (2005) Hayes and others (in press)

•	 Sources of the mineralizing 
fluids and transporting ligands.

•	 Sources of metals and other 
components.

•	 Migration pathway.

•	 Thermal gradient.

•	 Energy source to physically 
mobilize sufficient quantities 
of fluid to transport economic 
amounts of metal.

•	 A mechanical and structural 
focusing mechanism at the 
trap site.

•	 A chemical and (or) physical 
cause for enriched mineral 
precipitation at the trap site.

•	 Oxidized source rocks that are 
hematite stable and contain 
ferromagnesian minerals or 
mafic rock fragments from 
which copper can be leached.

•	 Source of brine to mobilize 
copper. 

•	 Source of reduced fluid to 
precipitate copper and form a 
deposit.

•	 Conditions favorable for fluid 
mixing.

•	 Source(s) of metal and sulfur 
(sulfate or sulfide).

•	 Source(s) of metal-transporting 
fluid.

•	 Transport paths of these fluids.

•	 Thermal or hydraulic pump to 
collect and drive the metal- and 
sulfate-transporting fluids.

•	 Chemical and physical 
processes which resulted in 
precipitation (trapping) of the 
sulfides.

•	 Copper source rocks.

•	 Liberation of copper from 
source rocks by a hot sedi-
mentary brine.

•	 Migration of this copper 
bearing brine.

•	 Non-oxidized, typically 
pyrite-bearing host rocks.

•	 Seal rocks.

•	 Traps, both physical and 
chemical.
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on current mining operations in South Africa, this is near the 
upper limit of virgin rock temperatures where current refrig-
eration technologies would permit underground mining.

Preliminary permissive tracts were created using GIS 
information from the Petroleum Geological Atlas of the South-
ern Permian Basin area (fig. 11; Doornenbal and Stevenson, 
2010). Coarse-grained (reservoir-facies) rocks were selected 
for the lower and upper part of the Slochteren Formation 
(equivalent to the Rotliegend Group) and merged into a new 
spatial layer. The facies units included in the selection are: 
playa margin (coastal sand-belt of playa lake); erg margin 
(sand flats); erg (dunes); and fluvial plain. This spatial layer 
was then clipped to include only the areas where the Zechstein 
1 cycle is present at depths less 2.5 km. The resulting polygons 
were smoothed and small holes were filled; small polygons 
(less than approximately 20 km2) were deleted. The scale of 
the Petroleum Geological Atlas of the Southern Permian Basin 
area maps is 1:3,000,000 (Doornenbal and Stevenson, 2010); 
therefore, tract boundaries were refined using larger scale 
maps such as the 1:1,000,000-scale map of Germany (Federal 
Institute for Geosciences and Natural Resources, 1993) and 
the 1:400,000-scale map of Sachsen-Anhalt (Stedingk and 
Rentzsch, 2003).

The resulting polygons were grouped into seven assess-
ment areas (tracts) for the purpose of this study (fig. 12):

•	 150rfCu0001, Hercynian-Thüringian Basin is 
located in central Germany in the states of Nieder-
sachsen, Sachsen-Anhalt, and Thüringen. Mining 
began in the High Middle Ages11 and two deposits 
were mined in the 20th century, Mansfeld and Sang-
erhausen. Two deposits, Feld Heldrungen (Thüringen) 
and Tiefscholle Osterhausen, have not been developed.

•	 150rfCu0002, Hessian Depression is located in south-
central Germany in the states of Baden-Wurttemberg, 
Bayern, Hessen, Niedersachsen, Nordrhein-Westfalen, 
and Thüringen. Mining began in the Late Middle 
Ages12 and one deposit was mined in the 20th century, 
Richelsdorf.

•	 150rfCu0003, North Sea includes part of northeastern 
England and most of the Netherlands. There is no his-
tory of mining, and there are no identified deposits for 
this tract.

•	 150rfCu0004, Dolny Śląsk (Lower Silesia) is located 
in southwestern Poland. Mining has continued since 
the Late Middle Ages and there are three deposits: 
Konrad-Grodziec-Wartowice, Lena-Nowy Kościół, and 
Lubin-Sieroszowice. Several mines are producing cop-
per from Lubin-Sieroszowice, and geological studies 
have identified many areas prospective for undiscov-
ered mineralization.

11 Approximately 1000–1299 C.E.

12 Approximately 1300–1500 C.E.

•	 150rfCu0005, Spremberg-Wittenberg is located 
in eastern Germany in the states of Brandenburg, 
Sachsen-Anhalt, and Sachsen. Two identified deposits, 
Graustein and Spremberg, are currently (2014) in the 
permitting process for development, and another site, 
Weisswasser, is being explored.

•	 150rfCu0006, Baltic Basin includes parts of eastern 
and northern Poland and extends into Russia and 
Lithuania. There is no history of mining, and no depos-
its have been identified.

•	 150rfCu0007, Jutland Peninsula includes parts of 
Denmark and Germany. There is no history of mining, 
and no deposits have been identified.

Some of the permissive tracts extend beyond the limits of 
the Southern Permian Basin area as specified in the Petroleum 
Geological Atlas (Doornenbal and Stevenson, 2010). The Hes-
sian Depression tract was extended to the south using areas 
where the Zechstein intersected the Rotliegend as shown on 
1:500,000-scale maps from Bavarian Geological State Office 
(2004a, b). A GIS layer showing the facies boundary from 
Rupf and Nitsch (2008) and the Zechstein rocks shown on 
the 1:1,000,000-scale map from Federal Institute for Geosci-
ences and Natural Resources (1993) were also used for the 
southern boundary. The Baltic Basin tract was extended to the 
east using the extent of the Zechstein 1 cycle deposits dataset 
(Doornenbal and Stevenson, 2010) and the extent of Rotlieg-
end rocks from Pokorski (1981). In the northeastern area, this 
tract was extended using the extent of the Zechstein 1 cycle 
deposits dataset from Doornenbal and Stevenson (2010). The 
Jutland Peninsula tract was extended to the north using the 
part of the Zechstein that is less than 2.5 km deep shown on a 
1:750,000-scale structural-depth map of the Zechstein (Vejbæk 
and Britze, 1994).

Mineral Resource Assessment—
Exploration History and Known 
Deposits

Central Germany—Permissive Tracts 
150rfCu0001, Hercynian-Thüringian Basin and 
150rfCu0002, Hessian Depression

Mining of the Kupferschiefer likely began in the High 
Middle Ages. Two miners from Goslar13, Nappian and Neuke, 
are purported to have begun mining copper in Hettstedt in 
the Mansfeld area in about 1199 (fig. 13; Spangenberg, 1572; 

13Goslar is a town near the Rammelsberg sedimentary exhalative lead-zinc-
silver deposits. These deposits were mined as early as the Bronze Age and 
were more-or-less continuously mined from the 10th to the 20th centuries.
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Jankowski 1995). Mining of the Kupferschiefer at Ilmenau 
is documented as early as 1216 (Schorn and others, 2012b). 
Mining of bituminous copper ores in central Europe is 
discussed by Albertus Magnus in Liber Mineralium, written 
about 1260 (Wyckoff, 1958). 

By the Late Middle Ages, copper was being mined at 
several places along the margins of the Thüringian Basin 
and the Hessian Depression. Mining is documented as early 
as 1460 in the Richelsdorf Mountains (Walther and Lippert, 
1986). In 1556, Georgius Agricola described mining and 
processing of ores and gave a brief description of the strata 
associated with the Mansfeld copper ores “For example, in 
those districts which lie at the foot of the Harz mountains, 
there are many different coloured strata, covering a copper 
vena dilatata.” Following a description of the overlying strata, 
he says “Beneath this, and last of all, lies the cupriferous stra-
tum, black coloured and schistose, in which there sometimes 
glitter scales of gold-coloured pyrites in the very thin sheets, 
which, as I said elsewhere, often take the forms of various 
living things” (Hoover and Hoover, 1950, p. 127). Mining 
began in the area near Frankenberg about 1590 (Schorn and 
others, 2012a). Elsewhere, mines at Baumbach, Albungen, and 
Witzenhausen were also active.

Early production was from near-surface, secondarily 
enriched ores with copper and silver contents exceeding 
1 percent and 10 ppm respectively (Walther and Lippert, 
1986). Fires were set underground to fracture rocks and miners 
used hammers, chisels, and wedge hoes to excavate the ore 
(fig. 14A). The working face was about 50 to 60 centimeters 
(cm) high; miners lay on their sides to dig out the ore material 
(Spilker, 2010). Around 1500, mine workings penetrated the 
water table, which necessitated the construction of drainage 
tunnels. By 1571, there were 127 shafts worked by nearly 
1,500 miners in the Mansfeld area (Stedingk, 2002). Mining 
was active at Korbach and Bieber in the 18th century (Walther 
and Lippert, 1986; Schorn and others, 2012a). By the end of 
the 18th century, mining reached depths of 130 m at Mansfeld 
(Walther and Lippert, 1986). 

Ore was extracted from many small tunnels and shafts; 
the spoil piles from these workings are a unique feature of 
today’s landscape (fig. 14B). Google Earth™ imagery was 
used to map the distribution of the spoil piles that indicate the 
location of old mine shafts; mapping started near Eisleben in 
the Mansfeld area, where we are confident that the conical 
mounds are related to old mine sites on the Kupferschiefer. 
We reviewed imagery anywhere rocks near the base of the 
Zechstein are mapped. In the Mansfeld area, the distribution 
of the mounds is up dip of the drainage tunnels (German: stol-
len) that were constructed to drain groundwater from the 
mines (Jankowski, 1995; Geological Office of the Saxony-
Anhalt Mining Area, [2000]). The distribution of these 
mounds clearly shows the concentration of mining activities 
in the Mansfeld and Sangerhausen areas, along the southern 
margin of the Harz, along the northern and southern flanks 
of the Thüringer Wald, along the northwestern margin of the 
Erzgebirge, and along the eastern margin of the Rheinisches 
Schiefergebirge (fig. 13).

The Industrial Revolution significantly increased ore 
production from the Kupferschiefer in central Germany 
(Stedingk, 2002; Krüger, 2006; Spilker, 2010). The first steam 
engine was put into operation in 1785; and iron hoist cables 
were first introduced in 1837. Dynamite was first used in 1870, 
and compressed air and pressurized-water drilling started in 
1883. The diamond drill, invented about 1863 (Edson, 1926), 
was used in mineral exploration and mining to search for new 
deposits and to guide mine development beginning in 1889 
(fig. 15; Spilker, 2010). The introduction of pneumatic tools 
increased the necessary working space in the mines to about 
80 to 100 cm (Spilker, 2010). More than 20 ore production 
shafts were put into operation in the Mansfeld area in the 
19th century (fig. 16; Geological Office of the Saxony-Anhalt 
Mining Area, 2000).

The late 18th and 19th centuries are also characterized by 
closures of mines that were intermittently mined since the Late 
Middle Ages (fig. 17)—Ilmenau in the late 1700s; Geismar, 
Schreufa, and Röddenau (near Frankenberg) about 1820; Leit-
mar in 1824; Albungen in 1849; and Hahausen shortly after 
1862 (Walther and Lippert, 1986; Schorn and others, 2012a,b).

Beginning in the 1930s, the German government initi-
ated mineral exploration programs with the intent of creating 
employment and securing strategic raw materials (Gillitzer, 
1936; Piątek and others, 2004). Systematic mineral explora-
tion in the Kupferschiefer was conducted in central Germany 
(fig. 17; Gillitzer, 1936; Richter, 1941; and Kautzsch, 1942) 
and in the region of Silesia (then a German province, now part 
of Poland) (fig. 12; Eisentraut, 1939). The geologists were 
clearly familiar with copper deposits that were mined inter-
mittently from the Late Middle Ages and focused exploration 
efforts near these sites.

In central Germany, geologists conducted drilling pro-
grams that investigated (1) the area near Mansfeld, (2) the 
southern edge of the Harz between Sangerhausen and Walken-
ried, (3) the area around Kyffhaus and Bottendorf, (4) the 
northern and southern margins of the Thüringer Wald, (5) the 
area around the Richelsdorf Mountains, (6) areas north and 
northeast of the Harz (Wiederstadt, Wohlsdorf, and Golbitz), 
and (7) along the southern margin of the Flechtinger Höhen-
zug (figs. 13, 16, 17; Gillitzer, 1936; Richter, 1941; Kautzsch, 
1942). Exploration results are illustrated with a variety of 
maps that are still in use today to identify areas with mineral 
potential. Maps show (1) the distribution of various sedimen-
tary facies of the Rotliegend and the Kupferschiefer; (2) the 
distribution of the Rote Fäule; (3) the concentration of measured 
metal surface density for copper, lead, and zinc; and (4) metal 
facies with the relative proportion of copper, lead, and zinc. 
The exploration program identified mineral potential in the 
Richelsdorf Mountains (also called the Kurhessische copper 
ore field), the Sangerhausen area, and in the area of Silesia 
in what is now southwestern Poland. In most of the other 
areas that had been mined in central Germany during the 13th 
through 19th centuries, only low-grade copper mineraliza-
tion was found in holes drilled down dip from the old mines. 
For example, one hole drilled near Bottendorf contained only 
tenths of a percent copper compared to copper grades of 2.5 to 
2.8 percent in old mine workings (Gillitzer, 1936).
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Figure 11.  Maps showing how preliminary permissive tracts were delineated for reduced-facies sediment-
hosted stratabound copper deposits in the Southern Permian Basin, northern Europe. The upper diagram shows 
the overlap between the sedimentary rocks of Zechstein Group cycle 1 (which includes the Kupferschiefer) 
and reservoir-facies red beds of the underlying Rotliegend Group. The lower map shows where the overlap 
occurs above a depth of 2.5 kilometers. The primary spatial datasets were published as part of the Petroleum 
Geological Atlas of the Southern Permian Basin area (Doornenbal and Stevenson, 2010).
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The exploration program in the Richelsdorf area (fig. 18) 
began in the 1930s and continued until 1942. An in-situ 
resource of 42,000,000 metric tons (t) of ore with 0.99 percent 
copper and containing 400,000 t of copper was estimated 
(table 4). A mill and a copper smelter were constructed in 
Sontra, and mining began in 1939. From 1939 to 1945 and 
1948 to 1954, 2,000,000 t of ore containing 15,300 t of copper 
and 7 t of silver were extracted. The mine closed in 1955 
without exhausting the identified resources (Walther and 
Lippert, 1986).

In the Sangerhausen area, mineralized rock covering 
about 9 km2 with an average thickness of 29.2 cm and a copper 
surface density of 16 kg/m2 was delineated (Kautzsch, 1942). 
The Thomas-Münzer-Shaft was started in 1944, but no mining 
took place until after World War II.

Exploration and mining efforts halted in Germany during 
the course of World War II and did not resume until several 
years after the war ended. Resource depletion in the Mansfeld 
deposit was evident in the early 1940s. Around 1955, a recon-
naissance survey was started between the Finne Fault and the 
Halle-Hettstedt Gebirgsbrücke that encompassed the Mansfeld 
and Sangerhausen areas (figs. 13 and 16). The work led to 
discovery of mineral resources at Sangerhausen, Tiefscholle 
Osterahausen, and Feld Heldrungen (figs. 16 and 19; Jung and 
Knitzschke, 1976). Development of the resources at Sanger-
hausen began in the early 1950s. Mining continued until 1969 
at Mansfeld to a depth of 995 m and 1990 at Sangerhausen 
to a depth of 950 m (Geological Office of the Saxony-Anhalt 
Mining Area, [2000]; Spilker, 2010).

From about 1200 to 1990, about 109 million metric 
tons (Mt) of ore containing 2.6 Mt copper and 14,000 met-
ric tons silver were produced from deposits in the region of 
Mansfeld and Sangerhausen (tract 150rfCu0001, Hercynian-
Thüringian Basin) (table 4; fig. 20; Knitzschke, 1995). About 
35.4 Mt of ore containing 860,000 t copper, 105,000 t lead, 
100,000 t zinc, and 4,700 t silver remain at Sangerhausen, 
Tiefscholle Osterhausen, and Feld Heldrungen (Knitzschke, 
1995; Stedingk and Rentzsch 2003; Liedtke and Vasters, 
2008). The deposits at Tiefscholle Osterhausen and Feld 
Heldrungen have not been mined.

The exploration work conducted by geologists from 
1946 to 1989 in East Germany (fig. 12) was not limited to the 
Mansfeld and Sangerhausen area; these geologists investigated 
the metal distribution of the basal Zechstein over an area of 

159,000 km2 where the Kupferschiefer occurs in Germany 
(Rentzsch and Franzke, 1997). The results are illustrated as 
a series of maps based on 1,082 underground and surface 
exposures, as well as 200 boreholes. A total of 10,000 samples 
were used to delimit and calculate the metal contents of the 
Kupferschiefer (Rentzsch and Franzke, 1997; Stedingk and 
Rentzsch, 2003). Copper surface density and metal zoning in 
permissive tracts 150rfCu0001 and 150rfCu0002 are shown on 
figures 21 and 22.

In West Germany (fig. 12), beginning in 1978 and con-
tinuing through 1987, St. Joe Explorations GmbH and various 
joint venture partners conducted an exploration program 
focused on the Lower Zechstein strata. In two areas, Richels-
dorf (Ronshausen-Rotenburg-Sontra) in the State of Hessen 
(Hesse) and Spessart-Rhön, in the State of Bayern (Bavaria), 
60 holes were drilled to depths between 150 and 780 m (fig. 19; 
Schmidt and others, 1986).

In the Richelsdorf area, St. Joe geologists found a Rote 
Fäule zone in several widespread drill holes (Schmidt and 
others, 1986). Near the village of Ronshausen, exploration 
work delineated geological resources of 8 Mt of ore contain-
ing 2.1 percent copper and 25 grams per metric ton (g/t) 
silver over a mining height of 2 m in the southern part of the 
Richelsdorf area (Südmulde) (Schumacher and Schmidt, 1985; 
Liedtke and Vasters, 2008). However, no significant results 
were obtained in the northern part of the Richelsdorf area 
(Nordmulde) or in the area between Bad Hersfeld and Fulda 
(fig. 19).

Exploration of the Spessart-Rhön area by St. Joe delin-
eated a copper anomaly covering more than 200 km2 (figs. 21 
and 22). This anomaly is divided into three areas: (1) Fulda 
(North Rhön) with maximum grades of 1.08 percent copper 
and 70 ppm silver over 2 m minimum thickness, (2) Spessart-
Rhön with maximum grades of 0.4 percent copper and 73 ppm 
silver over 2 m minimum thickness in the southwest and maxi-
mum copper contents of 0.73 percent and 19 ppm silver over 
2 m minimum thickness in the northeast, and (3) Spessart-
Rhön East (fig. 19; Schumacher and Schmidt, 1985; Schmidt 
and others, 1986; Liedtke and Vasters, 2008).

Recent summaries of exploration activity in Germany 
do not describe ongoing projects in tracts 150rfCu0001, 
Hercynian-Thüringian Basin, or 150rfCu0002, Hessian 
Depression (Seifert and Gutzmer, 2012; Wellmer, 2012). Many 
of the historic mine sites here are now parks or museums 
(Ließmann, 2010).
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Figure 21.  Map of the Hercynian-Thüringian and Hessian Depression Basin areas, Germany, showing copper surface 
density; permissive tracts 150rfCu0001, Hercynian-Thüringian Basin, and 150rfCu0002, Hessian Depression; deposits; and 
occurrences. Sources of information for copper surface density include Schmidt and others (1986); Federal Institute for 
Geosciences and Natural Resources (1993); Rentzsch and Franzke (1997); Rentzsch and others (1997); Geological Office of 
the Saxony-Anhalt Mining Area (2000); Stedingk and Rentzsch (2003); and Liedtke and Vasters (2008).
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Southwestern Poland and Adjoining Areas 
in Germany—Permissive Tracts 150rfCu0004, 
Dolny Śląsk (Lower Silesia), and 150rfCu0005, 
Spremberg-Wittenberg

In southwestern Poland, in the area of Silesia (fig. 23; 
tract150rfCu0004, Dolny Śląsk (Lower Silesia)), the earliest 
mining of the Kupferschiefer may date from the 13th century 
at Leszczyna (fig. 24; German: Haasel), when Saxon miners 
from Mansfeld introduced metallurgical practices that could 
extract metal from the ores (Piątek and others, 2004). The 
first written documentation of copper mining at Leszczyna 
is from 1360. Mining took place intermittently throughout 
the 14th to 18th centuries; however, the largest production 
came from a mine near Leszczyna called “Stilles Glück” or 
“Ciche Szczęście” (Kobylańska and Madziarz, 2012). From 
1866 to 1883, approximately 85,000 t of copper-enriched marl 
was mined, and 1,100 t copper and 3,437 kg of silver were 
produced (Eisentraut, 1939). Average grades were 1.3 percent 
copper and 40 g/t silver. In the late 19th and early 20th 
centuries, copper occurrences in the basal Zechstein Group 
were also described at Grzędy (German: Konradswaldau), 
Biegoszów (German: Hundorf), and Nowy Kościół (German: 
Neukirch) (Beyschlag and others, 1916).14

In the 1930s, most of Silesia was part of the German 
empire; Zechstein exposures in the eastern part of the North 
Sudetic Syncline were examined by German geologists in 
the 1930s (fig. 24; Eisentraut, 1939). Exploration focused on 
the Leszczyna and Nowy Kościół occurrences near Złotoryja 
(German: Goldberg) and an area approximately 30 km to 
the northwest near Bolesławiec (German: Bunzlau) (Eisen-
traut, 1939; Błądek and others, 2005). In the area south of 
Złotoryja, construction began on a mine near Wilków (Ger-
man: Wolfsdorf), which after World War II became the Lena 
Mine (table 4). The mine operated from 1950 to 1973 and 
produced 14,468,129 t of ore at 0.55 percent copper. In the 
area southeast of Bolesławiec, construction began on shafts 
that ultimately, after the war, became the Konrad Mine. 
Lubichów produced approximately 2,000,000 t of ore contain-
ing 0.68 percent copper before it was merged with the Konrad 
Mine in 1976; Konrad produced 37,914,702 t of ore with 
0.78 percent copper before mining ceased in 1989 (table 4).15

14Maps and text in Beyschlag and others (1916) and Eisentraut (1939) use 
German names for settled areas in Silesia. Modern maps of the region use 
Polish names. German names are given in parentheses to help interpret infor-
mation in these older reports.

15 For sediment-hosted stratabound copper deposits, it is common to have 
multiple mines on a deposit. The Lena and Nowy Kościół deposits are contig-
uous; therefore, tonnage and grade are aggregated in table 4. The production 
numbers reported in this paragraph are from individual mines on the deposit.

Beginning in 1952, the Polish Geological Institute–
National Research Institute (PGI) in Warsaw, under the direc-
tion of Jan Wyżykowski, conducted research and exploration 
in the Fore-Sudetic Monocline (figs. 23 and 25). In 1957, ore-
grade material was discovered in the Sieroszowice region at a 
depth of 600 m; in this area, Triassic and older rocks, includ-
ing the deposit, are concealed beneath hundreds of meters 
of Tertiary and Quaternary alluvium (fig. 25). In 1959, Jan 
Wyżykowski and team announced resources of 1,360,000,000 
t of ore containing 19,300,000 t of copper in the Lubin-
Sieroszowice area based on the results of 24 holes (Błądek and 
others, 2005). The ore deposit is so large that several mines are 
currently needed to develop it—Lubin (in production 1958), 
Rudna (in production 1974), and Polkowice-Sieroszowice 
(Polkowice in 1968 and Sieroszowice in 1980) (fig. 26; table 
5). Another mine, Głogów Głęboki Przemysłowy, is in the pre-
production stage (KGHM, 2012).

From 1958 to 2009, KGHM mines produced 14,800,000 t 
of copper from about a billion metric tons of ore (fig. 27; 
USBM and USGS data from Minerals Yearbooks). The 
amount of metal produced reflects losses in metallurgical 
recovery, dilution, mining operations, and pillars. Using loss 
information in Lattanzi and others (1997), we estimate that 
the premining resource for the material that was mined was 
approximately 1,400 Mt of ore containing about 1.83 percent 
copper and 26 Mt of contained copper. As of December 31, 
2011, KGHM reports measured and indicated mineral 
resources of 1,500 Mt of ore with 1.97 percent copper and 
59 g/t silver (KGHM, 2012). These remaining resources 
contain 29,485,000 t of copper and 88,298 t of silver and the 
deposit is open at depth. After accounting for dilution and 
losses that occur during mining, reserves are estimated to be 
1,181,032,000 t of ore with 1.58 percent copper and 48 g/t 
silver (KGHM, 2012). The production and remaining resource 
information suggest an ore body that contained about 2,900 Mt 
of ore containing more than 55 Mt of copper. If the resource 
estimates for Bytom Odrzanski, Gaworzyce, Radwanice-
Zachod, and Retchow are added to early, published numbers 
of tonnage and grade (Wodzicki and Piestrzyński, 1994), the 
estimated premining size of the deposit is 3,600 Mt of ore with 
approximately 72 Mt of copper (table 4). With the available 
information, we cannot explain the discrepancy between the 
estimates of the original size of the deposit. Regardless, either 
estimate indicates that the Lubin-Sieroszowice area contains a 
supergiant deposit using the criteria of Singer (1995).
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Table 5.  Technical information for the mines developing copper deposits in the Fore-Sudetic Monocline, Southern Permian Basin, 
Poland.

[P, Polkowice; S, Sieroszowice; n.d., no data; %, percent; g/t, grams per metric ton; m, meter; m/ºC, meters per degrees Celsius; ºC/100 m, degrees Celsius per 
100 meters; ºC, degrees Celsius]

Mine Mining areas
Average copper 

grade (%)
Average silver 

grade (g/t)
Mining depths 

(m)
Average geother-

mal step (m/ºC)

Average geo-
thermal gradi-
ent (ºC/100 m)

Virgin rock tem-
perature, Upper 
Permian strata 

(ºC)

Lubin Lubin I and 
Małomice I

1.0 42 480–890 38.0 3.0 21.7 to 36.5

Polkowice-
Sieroszowice

Polkowice 
II, Sieroszo-
wice I; and 
Radwanice 
Wschód

1.85 44 676–1,084 P: 36.1

S: 40.9

P: 3.0

S: 2.8

P: 27.5 to 35.0

S: 27.2 to 48.7

Rudna Rudna I and 
Rudna II

1.65 46 920–1,170 39.8 2.5 34.5 to 47.7

Głogów 
Głęboki-
Przemysłowy

Głogów 
Głęboki-
Przemysłowy

1.90 61 1,200–1,400 n.d. n.d. 47.8

Figure 27.  Graph showing copper production from the Lubin-Sieroszowice mining area, Poland, from 1958 to 
2010. Data from the U.S. Bureau of Mines (USBM) and U.S. Geological Survey (USGS) Minerals Yearbooks, as 
well as Polish Geological Institute–National Research Institute (PGI) (2009b).
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In the 1980s, PGI used a computer database to study the 
grade of mineralization and distribution of metals in the basal 
part of the Zechstein Formation in Poland. The database con-
tains results of chemical analyses of rock samples for copper, 
lead, zinc, silver, nickel, cobalt, vanadium, and molybdenum 
and information on lithostratigraphic units. In 1995, the data-
base contained data from 774 boreholes with chemical analy-
ses of more than 50,000 samples. In 1997, a metallogenic atlas 
of the Zechstein was published (Oszczepalski and Rydzewski, 
1997b); the database is continually supplemented and new ver-
sions of maps have been subsequently released (figs. 28 and 
29; Oszczepalski and Speczik 2011, 2012). This information 
has been used to document the potential for copper and silver 
in SSC mineralization in Poland; 15 prospects above the depth 
of 2,000 m are forecast to have prognostic resources16 contain-
ing 69.54 Mt of copper. Below 2,000 m, another six prospects 
are thought to contain an additional 186.4 Mt of copper 
(fig. 30; Oszczepalski and Speczik 2011, 2012).

As of August 1, 2013, more than 20 concessions for 
prospecting and exploration have been awarded by the Polish 
Ministry of the Environment (Ministerstwo Środowiska, 
MOS) and another 12 applications are pending (Ministry of 
the Environment, Republic of Poland, 2013a, b) (fig. 30). Con-
cessions largely cover areas recently identified as prospective 
with prognostic resource estimates (Oszczepalski and Speczik, 
2011, 2012). Exploration information was found for five of the 
concessions.

KGHM is conducting exploration on two of the con-
cessions (KGHM, 2012; Bartlett and others, 2013). For the 
Radwanice-Gaworzyce Project, 19 drill holes are planned with 
the objective of assessing the possibility of exploiting the cop-
per deposit on MOS concessions Gaworzyce 20/2008/p and 
Radwanice 13/2009/p. For the Grodziecka Syncline Project 
(MOS concession Synklina Grodziecka 23/2009/p), 15 or 
more drill holes are planned in order to increase the mineral 
inventory and the confidence level of the resource estimate.

Balamara Resources Limited has drilled three holes on 
its Bogdan Project (MOS concession Niemstów-Wielowieś 
5/2208/p) with the following results (Balamara Resources 
Limited, 2013):

•	 Hole B1: 2 m at 2.39 percent lead, 0.42 percent copper, 
and 18.9 g/t silver from 284 to 286 m

•	 Hole B2: 1 m at 2.05 percent lead, 0.28 percent copper, 
and 10.6 g/t silver from 371.4 m

•	 Hole B4: Upper lead zone with 6 m at 0.73 percent 
lead and 4.6 g/t silver from 343 m; and lower copper 
zone with 8.5 m at 0.36 percent copper and 11.6 g/t 
silver from 349.5 m.

16Prognostic resources are equivalent to undiscovered resources as used by 
the USGS. They do not have enough information to be formally classified as 
mineral inventory using either the COMECON or CRIRSCO (Committee for 
Mineral Reserves International Reporting Standards) systems.

In the Lausitzer area in the German States of Branden-
burg and Saxony (fig. 23; tract 150rfCu0005, Spremberg-
Wittenberg), geophysical exploration by East German sci-
entists in the 1950s located a seismic high that subsequent 
drilling showed to be a covered, pre-Tertiary northwest- to 
southeast-trending fault-bounded anticline superimposed 
on the westward extension of the North Sudetic Syncline in 
Poland. Early drill results showed that the Zechstein and the 
Kupferschiefer are present (Kölbel, 1958). Between 1953 and 
1981, the structure was investigated by geophysical surveys 
and more than 120 drill holes, culminating in the discovery of 
the Spremberg and Graustein copper deposits (fig. 23; Kopp 
and others, 2006). The deposits occur on the north and north-
east flank of the structure and underlie an area that extends for 
about 14 km in a northwest-southeast direction with a width 
of 2 to 3 km. The Spremberg and Graustein deposits occur 
at depths ranging from 400 to 1,650 m below the surface 
(Knitzschke and Vulpius, 2007)

The first resource estimates were based on work conducted 
between 1958 and 1964 and were revised based on supple-
mentary drilling done between 1971 and 1974. Based on the 
new resource estimate, an investment decision was made to 
develop the Spremberg and Graustein deposits, with start of 
production scheduled for 1990. However, work was suspended 
on the project in August 1980 (Knitzschke and Vulpius, 2007).

In 2007, KSL Kupferschiefer Lausitz GmbH [KSL] 
was established to reassess the Spremberg and Graustein 
deposits. From 2008 to 2010, KSL reevaluated the existing 
data and drilling and then completed a program of three drill 
holes and four drill-hole deflections.17 In 2011, a seismic 
survey was conducted around the Spremberg ore deposit, 
and an authorization was granted to KSL for the mining 
rights of the Spremberg and Graustein deposits (KSL, 2011). 
Currently, the Graustein deposit has 53.6 Mt of ore contain-
ing 868,320 metric tons of copper; the Spremberg deposit 
has 44.1 Mt of ore containing 617,000 metric tons of copper 
(table 4). The company is currently (2014) working on obtain-
ing a regional planning permit (KSL, 2013).

KGHM is also conducting exploration in the Lausitzer 
area between Weisswasser and Nochten in Germany at a 
site where previous studies indicated ore mineralization in a 
single drill hole (fig. 23; Bachowski and others, 2007; KGHM, 
2012). KGHM has completed four holes to test the mineral 
potential of this area (Gazeta Polska Codziennie, 2013). The 
mineralization occurs at depths ranging from 1,250 to 1,350 m 
(Legnica, 2012).

17A wedge-shaped piece of metal is used to deflect the drill bit so that 
another hole can be drilled through an ore body. The cost of deflecting is much 
less than drilling a new hole.
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Northeast England and the Netherlands—
Permissive Tract 150rfCu0003, North Sea

The stratigraphic equivalents of the Kupferschiefer occur 
over reservoir-facies Rotliegend Group rocks in England and 
the Netherlands and make up tract 150rfCu0003 (fig. 31). The 
Marl Slate, a bituminous dolomitic siltstone, is the equiva-
lent of the Kupferschiefer Formation in England (Hirst and 
Dunham, 1963; Turner and others, 1978; Haslam, 1982). It is 
black to dark gray and ranges in thickness from 0.2 to 3.9 m, 
with an average thickness of 1.33 meters (Hirst and Dunham, 
1963). Sulfide minerals occur mainly as disseminated fram-
boidal pyrite and also as lenses of pyrite, chalcopyrite, galena, 
sphalerite, and rarer sulfides (Love, 1962; Turner and others, 
1978). In the Netherlands, the Coppershale Member of the 
Z1 (Werra) Formation is the equivalent of the Kupferschiefer 
(Van Adrichem Boogert and Kouwe, 1993–97).

Concentrations of copper, lead, and zinc are not known to 
reach economic levels in the Marl Slate of northeast England 
or the United Kingdom (U.K.) sector of the Southern North 
Sea Basin (table 6; Hirst and Dunham, 1963; Haslam, 1982). 
During 1960–1961, boreholes were drilled by the [U.K.] 
National Coal Board to investigate an extension of the Dur-
ham Coalfield (Carbonaceous Coal Measures18) concealed 
beneath the Permian Magnesian Limestone (fig. 32; Hirst and 
Dunham, 1963). Unweathered Marl Slate was sampled from 
six localities. The average copper contents of the shale interval 
in cores ranged from 69 to 310 ppm, with individual samples 
ranging from 13 to 754 ppm. The metal content of the Marl 
Slate was also investigated in nine wells in the United King-
dom sector of the Southern North Sea Basin (Haslam, 1982). 
In most wells, thickness of the slate ranged from 7.6 cm to 
1.8 m. Of the 17 samples, 12 contain 100 ppm copper or less. 
Copper contents were higher in two wells with condensed sec-
tions of the Marl Slate: 3,000 ppm in well 49/20-1, where the 
slate was 7.6 cm thick and 7,000 ppm in well 48/12-2 where 
the slate was 30 cm thick.

Rocks equivalent to the Kupferschiefer (the Coppershale 
Member of the Werra Formation of the Netherlands) were 
deposited in most of the Netherlands, with the exception of the 
southern on-shore area (Geluk, 2005). For the part of the per-
missive tract in the Netherlands, the depth of the Coppershale 
Member is greater than 1,000 m. We did not find information 
on the metal contents or the sulfide mineralogy of the shale in 
this area.

18The Coal Measures is a lithostratigraphic term used in the U.K. for the 
coal-bearing part of the Upper Carboniferous System. The Coal Measures 
Group consists of the Upper Coal Measures Formation, the Middle Coal Mea-
sures Formation, and the Lower Coal Measures Formation.

Lithuania, Poland, and Russia—Permissive 
Tract 150rfCu0006, Baltic Basin

Permissive tract 150rfCu0006, Baltic Basin consists of 
three areas where the Kupferschiefer (or stratigraphic cor-
relative units) overlies reservoir-facies Rotliegend red beds in 
north-central Poland (west of Gdansk), northeastern Poland-
Lithuania-Russia (east of Gdansk to Vilnius), and eastern 
Poland (east of Warsaw) (fig. 33). Permissive strata of all three 
areas are east of the Tornquist-Teisseyre Zone and overlie the 
Baltic Shield, beyond the zone of Variscan deformation (fig. 1). 
For the areas west of Gdansk and east of Warsaw, studies of 
drill core show that the sulfide minerals of the Zechstein rocks 
are dominated by pyrite, indicating the absence of hydro-
thermal, diagenetic copper mineralization (Oszczepalski and 
Rydzewski, 1997b).

The largest permissive area extends from northeastern 
Poland through the Kaliningrad Oblast19 of Russia, and into 
Lithuania. These rocks occur in the far northeasternmost part 
of the Southern Permian Basin in Lithuania. At the time of 
deposition, this area had a restricted connection with the main 
part of the basin resulting in the deposition of a condensed 
section of Zechstein rocks. Evaporite horizons, which form 
a seal in most of the Southern Permian Basin, are commonly 
thin or absent, although some carbonate units are thicker than 
those in more basinward locations (Peryt and others, 2010). 
The Sasnava Series (the Z1 Kupferschiefer equivalent in 
Lithuania) is usually 0.4 to 1.7 m thick (maximum 15 m) and 
consists of calcareous, sandy and bituminous shales. Local 
increases in metal concentrations (mainly of copper, lead, 
and zinc) are not economically important (Oszczepalski and 
Rydzewski, 1997b; Peryt and others, 2010).

The Middle Subformation of the Murav’ev Formation 
has been drilled in Kaliningrad Oblast. It is the stratigraphic 
equivalent of the Lithuanian Sasnava Formation and the 
European Kupferschiefer (table 7; Zagorodnykh, 2000). The 
unit is no more than 3 m thick and consists of dark gray and 
black silty-carbonate rocks with high organic carbon content. 
Sulfide minerals are unevenly disseminated in these rocks. 
Where the subformation has been sampled in 25 drill holes, 
copper contents are less than 80 ppm; three holes have copper 
contents of 800, 1,500, and 3,000 ppm. These same intervals 
have lead and zinc contents of 3,000, 10,000, and 7,000 and 
200, 800, and 15,000 ppm, respectively. Metal concentrations 
and mineralogy do not indicate the presence of a significant 
copper-mineralizing ore system (fig. 34).

19Oblast is an administrative territorial division within Russia and other 
former Soviet republics.

http://en.wikipedia.org/wiki/Lithostratigraphy
http://en.wikipedia.org/wiki/Carboniferous
http://en.wikipedia.org/wiki/Coal_Measures_Group
http://en.wikipedia.org/wiki/Coal_Measures_Group
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Table 6.  Data from drill core intersecting the Marl Slate in permissive tract 150rfCu0003, North Sea, Southern Permian Basin, 
United Kingdom.

[n.d., no data; m, meter; ppm, parts per million] 

Borehole 
name

Sample 
thickness 

(m)

Kupferschiefer 
depth interval 

(m)

Kupferschief-
er thickness 

(m)

Number of 
samples

High 
copper 
(ppm)

Low 
copper 
(ppm)

Average 
copper 
(ppm)

Reference

Onshore

Butterwick, 
Fishburn

0.4953 103.7–104.2 0.4953 21 188 59 91 Hirst and Dunham 
(1963)

Chilton 
Lane,  
Mainsforth

1.016 n.d.–78.6 n.d. 7 57 13 43 Hirst and Dunham 
(1963)

Dunstan 
Road, Low 
Throston

0.254 200.736– 
200.99

0.254 10 156 49 84 Hirst and Dunham 
(1963)

Elwick ‘A’ 0.0508 n.d.–166.7 n.d. n.d. n.d. n.d. n.d. Hirst and Dunham 
(1963)

Fishburn, 
Butterwick 
Bridge

0.1905 100.8–101.0 0.1905 21 754 139 310 Hirst and Dunham 
(1963)

Hartlepool 
lighthouse, 
Hartlepool

0.0508 n.d.–260.9 n.d. 8 43 37 39 Hirst and Dunham 
(1963)

Surtees 
Arms, 
Mainsforth

2.3622 59.5–61.9 2.3622 20 141 43 69 Hirst and Dunham 
(1963)

Offshore

D4 n.d. n.d. 1.15 36 440 20 94 Turner and others 
(1978); Sweeney and 
others (1987)

VT8 n.d. n.d. 1.44 144 900 200 656 Turner and Magaritz 
(1986); Sweeney and 
others (1987)

41/18-1 n.d. 1,612.39–
1,613.0

0.6096 3 340 38 141 Haslam (1982)

41/25A-1 n.d. 1,722.12–
1,723.34

1.2192 3 750 28 279 Haslam (1982)

43/3-1 n.d. 2,962.6– 
2,964.4

1.8288 40 
(drill cuttings)

64 24 37 Haslam (1982)

44/11-1 n.d. 3,401.26–
3,402.48

1.2192 5 200 28 93 Haslam (1982)

44/21-1 n.d. 3,862.12–
3,863.03

0.9144 1 16 16 16 Haslam (1982)

48/12-2 n.d. n.d. 0.3048 3 7,000 84 4,100 Haslam (1982)

48/6-1 n.d. 2,652.06–
2,652.67

0.6096 3 130 25 51 Haslam (1982)

49/20-1 n.d. 2,410.36–
2,410.4362

0.0762 1 3,000 3,000 3,000 Haslam (1982)

53/2-1 n.d. 1,906.219–
1,918.411

2.192 2 100 78 89 Haslam (1982)
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Denmark, Germany, and Poland—Permissive 
Tract 150rfCu0007, Jutland Peninsula

Permissive tract 150rfCu0007 occurs where the Kupfer-
schiefer overlies Rotliegend rocks in the Jutland Peninsula 
area (fig. 35). Along the southwestern flank of the Ringkøbing-
Fyn-Mon structural high, south-dipping Rotliegend and basal 
Zechstein beds pinch out by onlap against basement rocks, 
forming the northern boundary of the permissive tract (fig. 36: 
Z1 onlap pinchout) (Clausen and Pedersen, 1999). The south-
western margin of the permissive tract is delimited where 

the south-dipping basal Zechstein Group rocks are more than 
2.5 km below the surface (fig. 36, greater than 2.5 km deep). 
On the Jutland Peninsula, tract boundaries north of the Brande 
Trough are also defined where north-dipping permissive rocks 
are at depths of 2,500 m below the surface. This tract has a 
generally favorable paleotopographic setting where the Kup-
ferschiefer and subjacent Rotliegend onlap on local basement-
rock highs (similar to those found in the Spessart-Rhön and 
Richelsdorf areas of southwestern Germany). However, the 
basal Zechstein rocks are buried everywhere by at least 1.3 km 
of younger sedimentary rocks.

Table 7.  Analyses of core samples from the Middle subformation of the Murav’ev Formation (correlative with the 
Kupferschiefer; Zagorodnykh, 2000) in permissive tract 150rfCu0006, Baltic Basin, Southern Permian Basin, Russia.

[m, meter; ppm, parts per million; Cu, copper; Pb, lead; Zn, zinc; V, vanadium; Mo, molybdenum; Co, cobalt; Ni, nickel; >, greater than]

Borehole number Depth interval (m) Cu (ppm) Pb (ppm) Zn (ppm) V (ppm) Mo (ppm) Co (ppm) Ni (ppm)

1-C 2,934.0–937.0 40 80 100 250 100 50 80
2-C 848.5–848.8 50 1,000 100 400 60 80 100
3-C 1,023.0 50 80 60 100 30 40 80
20 1,012.5 40 500 2,000 500 100 40 100
21 1,005.0–1,007.0 40 60 15 800 100 80 100
17 771.0–773.0 40 300 1,500 500 100 60 80
23 923.0–925.0 50 80 200 200 50 30 80
27 337.0–840.0 50 2,000 600 250 300 150 100
28 1,041.0–1,042.3 50 60 50 250 50 40 80
32 767.0–769.0 60 6,500 4,000 5,000 320 80 150
33 778.5–780.0 60 1,500 300 1,800 100 120 150
36 692.0–693.0 50 100 50 1,700 300 60 100
37 709.0–710.0 50 60 150 1,800 100 75 130
41 1,021.5–1,022.8 800 3,000 200 250 100 50 60
43 687.0–688.5 1,500 10,000 800 2,000 >300 700 500
46 1,047.0–1,049.0 70 700 1,500 1,000 >300 50 200
50 925.5–926.0 40 30 60 100 30 40 80
1-P 1,044.5–1,045.5 3,000 7,000 15,000 3,000 >300 300 300
2-P 1,051.0–1,052.0 60 5,000 6,000 1,200 400 200 30
5-Nem 686.2–687.2 40 25 40 >1,000 300 50 100
7-Nem 725.6–726.6 40 20 30 >1,000 250 50 10
11-W.S. 716.0–717.0 80 3,500 7,000 7,800 490 60 220
6-Gus 887.0–888.5 60 150 1,500 500 150 50 100
3-N.G. 797.3–799.0 50 40 40 500 100 50 100
4-N.G. 795.0–795.5 30 200 2000 120 40 20 60
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Rentzsch and others (1997) show an area of Rote Fäule 
that has altered the host sequence extending southwestward 
into northeastern mainland Germany from a Kupferschiefer 
onlap pinch out against basement rocks in the subsurface of 
Rügen Island (fig. 36). However, the mineral-zonation map 
shows no significant copper enrichment adjacent to it. Oszcz-
epalski and Rydzewski (1997b) report copper surface density 
of 1 to 5 kg/m2 in samples from Polish holes, Międzyzdroje 
5 and Laska 2, associated with the continuation of the Rote 
Fäule zone in northwestern Poland (fig. 36). Rote Fäule altera-
tion of the host interval was probably produced by oxidiz-
ing brine analogous with the copper-mineralizing brines of 
economic Kupferschiefer-related deposits. However, copper 
concentrations in 10 holes along the 190-km length of the 
Rote Fäule boundary are only slightly above background val-
ues. Nevertheless, the Rügen Island Rote Fäule zone is taken 
as a favorable indicator for the entire Jutland Peninsula tract 
despite the low copper values.

About 18 wells drilled for hydrocarbon exploration likely 
penetrated the Kupferschiefer horizon in tract 150rfCu0007 
(Vejbaek and Britze, 1994). However, there are no analyses 
of metal or organic content of Zechstein rocks in these holes 
(Bo Møller Stensgaard, Geological Survey of Denmark and 
Greenland, written commun., 2010).

Mineral Resource Assessment—
Probable Amounts of Undiscovered 
Copper

For this report, “undiscovered mineral resources” could 
be present where location, grade, quality, and quantity of 
mineralized material are not constrained by specific geologic 
evidence. Two different methods are used to assess undiscov-
ered mineral resources. The first approach, the three-part form 
of assessment, estimates the number of undiscovered deposits 
to constrain undiscovered resources; this approach has been 
widely used in USGS mineral resource assessments since 
the 1970s (Singer and Menzie, 2010). A second approach, 

Gaussian Geostatistical Simulation, uses geostatistical 
methods and simulation techniques to estimate undiscovered 
mineral resources from drill data in incompletely explored 
extensions of SSC deposits in permissive tract 150rfCu0004, 
Dolny Śląsk (Lower Silesia).

Three-Part Form of Assessment

In the three-part form of assessment (Singer, 1993; Singer 
and Menzie, 2010), probabilistic distributions of the amount of 
in-situ metal are used to express the amount of undiscovered 
mineral resource. To estimate undiscovered resources, num-
bers of undiscovered deposits of a given type are estimated at 
various quantile levels for the permissive tracts. Using Monte 
Carlo simulations, these undiscovered deposit estimates are 
combined with tonnage and grade models to derive a probabil-
ity distribution for the amounts of commodities and rock that 
could be present in undiscovered deposits.

The amounts of undiscovered resources are derived 
from (1) models for grades and tonnages of undiscovered 
deposits of the same type in geologically similar settings and 
(2) probabilistic estimates of the number of undiscovered 
deposits of each type that are predicted to exist in the delineated 
tracts. About 170 well-explored deposits were used to con-
struct several SSC grade and tonnage models (Zientek, Hayes, 
and Taylor, 2013). The grade and tonnage model used for 
this assessment is the model for reduced-facies-nonbrecciated 
deposits. It is based on 50 deposits; summary statistics are 
given in table 8. Median and mean values for ore tonnage are 
34 and 180 Mt and for copper grades are 1.5 and 1.6 percent, 
respectively.

The distribution of undiscovered deposits is estimated by 
expert panels of geologists at several probability percentiles. 
From these percentile values, a default probability distribution 
for the undiscovered deposits is chosen that is approximately 
in the middle of all possible choices (Root and others, 1992). 
Monte Carlo simulation is used to combine grade and ton-
nage models with the probability distribution of undiscovered 
deposits to obtain the estimated probability distributions of 
undiscovered metals in each tract (Root and others, 1996; 
Bawiec and Spanski, 2012; Duval, 2012).

Table 8.  Summary statistics for the reduced-facies-nonbrecciated sediment-hosted stratabound copper deposit model of Zientek, 
Hayes, and Taylor (2013).

[n.d., no data]

Value
Number of 
deposits

Mean
Quantile  

5th
Quantile 

10th
Quantile 

25th
Median

Quantile 
75th

Quantile 
90th

Quantile 
95th

Ore (million metric tons) 50 180 1.1 1.6 6.2 34 97 550 730
Copper grade (percent) 50 1.6 0.8 0.9 1.0 1.5 2.1 2.5 2.8
Silver grade (grams per 
metric ton)

19 33 2.4 5.0 10 17 45 110 140

Cobalt grade (percent) 9 0.1 n.d. n.d. 0.03 0.1 0.1 0.3 0.3
Contained copper metal 
(million metric tons)

50 3.5 0.016 0.023 0.1 0.46 1.4 10 19
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Criteria for Assessing Mineral Potential
For the Kupferschiefer permissive tracts, several criteria 

were considered when assessing the potential for undiscovered 
copper resources (table 9). Tracts where Permian-Carbonifer-
ous volcanic rocks are absent do not have significant mineral 
occurrences (fig. 37); similarly, no significant mineral occur-
rences are reported in tracts underlain by rocks of the Carbon-
iferous Coal Measures or crystalline basement on the northeast 
side of the Tornquist-Teisseyre zone (fig. 38). Tracts underlain 
by Rotliegend depocenters have mineral occurrences, whereas 
tracts away from known depocenters have no mineral occur-
rences. In tracts where mineral occurrences are known, maps 
of metal surface density and mineral zoning strongly influ-
enced estimates of mineral potential. 

Sources of Metal
The presence of source rocks for copper is one criterion 

that can be used to evaluate the permissive tracts. The high 
amounts of base metals in the ore deposits must be derived 
from underlying strata, most probably the Rotliegend volcanic 
rocks and continental clastic rocks (fig. 37; Wedepohl, 1964; 
Marowsky, 1969; Harańczyk, 1986; Jowett, 1986; Speczik 
and others, 1986; Oszczepalski, 1989). Burial metamorphism 
of mafic volcanic rocks could produce copper-bearing fluids 
by dehydration and metal leaching of the fragmental, amyg-
daloidal, or fractured parts of the flows (Borg, 1991; Brown, 
2006). For example, geothermal fluids derived from Permo-
Carboniferous volcanic rocks and basal Rotliegend conglom-
erates in a deep well in the Northeast German Subbasin have 
a pH value of 6.2, an oxidation/reduction potential Eh value 
of 50 millivolts (mV), and relatively high values of copper, 
zinc, iron, lead, and manganese—9, 65, 200, 100–225, and 
230 milligrams per liter (mg/L), respectively (Wolfgramm and 
others, 2003). Red beds are known to contain labile20 detrital 
minerals, such as biotite, hornblende, and magnetite, which 
are known to contain trace amounts of copper (Walker, 1989; 
Core and others, 2005). Postdepositional alteration of these 
minerals could release copper to be dissolved in groundwater 
or adsorbed onto simultaneously forming smectite and poorly 
crystallized ferric hydroxides (Rose, 1976; Rose and others, 
1986; Walker, 1989; Rose and Bianchi-Mosquera, 1993). The 
adsorbed copper could be liberated by later diagenetic altera-
tion that accompanies aging and burial of red beds (Walker, 
1989). Red beds are present in each tract; however, Rotliegend 
volcanic rocks are not known from the North Sea and Baltic 
Basin tracts (150rfCu0003 and 150rfCu0006).

Ore Fluids
Another criterion used to evaluate permissive tracts is 

whether a copper-rich ore fluid is likely to have been present. 

20Labile refers to rocks and minerals that are mechanically or chemically 
unstable (Neuendorf and others, 2005).

The metal-bearing fluids for SSC deposits are thought to 
be low-temperature, oxidized (hematite-stable), chloride-rich, 
subsurface sedimentary brines. The mineral reactions associ-
ated with ore formation occurred at depths of 2 to 3 km in 
sedimentary basins. Gangue mineral assemblages associated 
with ore deposition in SSC mineral deposits are the same as 
those that occur in the transition from mechanical to chemical 
compaction during the diagenetic evolution of a basin (Burst, 
1969; Boles, 1982; Hower and others, 1976; Surdam and 
Crossey, 1987; Hayes and others, 1989; Surdam and others, 
1989; Morad and others, 2000; Worden and Burley, 2003; van 
de Kamp, 2008).

Copper has limited solubility in most surface and sub-
surface water (Rittenhouse and others, 1969; Rickard, 1970; 
Kharaka and others, 1987; Saunders and Swann, 1990; Donat 
and Bruland, 1995; Gallup, 1998) suggesting that transport of 
significant amounts of copper by surface or subsurface waters 
is likely uncommon (Rose, 1976; Rose and others, 1986). 
However, studies of solution and mineral equilibria show 
that copper and sulfur (as sulfate) are readily transported in 
aqueous fluids that are near neutral in pH, chloride-rich, and 
oxidized (in the stability field of hematite) (Garrels and Christ, 
1965; Rose, 1976).

Elevated concentration of chlorine in subsurface 
waters is not unusual. More than 50 percent of the world’s 
basinal waters are more saline than seawater (greater than 
35,000 mg/L) and more than 70 percent of oil field waters are 
either saline (10,000 to 50,000 mg/L) or brines (greater than 
50,000 mg/L) (Warren, 2006). The crucial process in ore for-
mation appears to be developing and maintaining an oxidized 
fluid at depth. Most subsurface oil field brines have relatively 
low redox potentials (Collins, 1975), with the oxidation state 
buffered by the presence of organic material. Also, the field 
for maximum solubility of copper in aqueous solutions is at 
higher Eh than most oil field brines.

The elevated Eh required for the transport of copper indi-
cates the ore fluids had contact with the atmosphere. Brown 
(2009) suggests the origin of oxidized ore fluids is oxygen-rich 
meteoric water driven by topographic recharge in highlands 
adjacent to the intracratonic rift basins hosting the deposits. 
However, for this assessment, we propose that the oxidized 
subsurface waters are the result of brine reflux.21 This refluxed 
connate brine could be stored in adjacent continental strata 
(such as fluvial or aeolian sediments) as well as in a marine 
host (Warren, 2006). This proposal implies that areas will be 
more prospective if the brine reflux is retained in the conti-
nental strata until it is released later during burial diagenesis 
and reacts with reduced strata. Studies of diagenetic processes 
show that diagenetic fluids from rocks lower in the basin can 
flush potential ore fluids from Rotliegend rocks.

The Rotliegend sandstones have distinctive suites of 
authigenic minerals that can be related to multiple fluid 

21Brine reflux occurs when ponded or concentrating holomictic brines atop 
the floor of an evaporitic seaway or lake become dense enough to displace 
underlying pore fluids and so percolate into the underlying succession 
(Warren, 2006).
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Table 9.  Selected criteria used to evaluate reduced-facies sediment-hosted stratabound copper tracts for mineral potential in the 
Southern Permian Basin, Europe.

Assessment areas 
with aquifer or 

reservoir facies red 
beds overlain by 
Kupferschiefer

Possible sources of 
copper

Rotliegend depocen-
ter

Pre-Permian base-
ment type

Rote Fäule, copper 
occurrences, and (or) 
copper zone mapped

Country(ies)

Not assessed quantitatively

150rfCu0003, 
North Sea

Subaerial volcanic 
rocks—None
Red beds— 
Rotliegend

None Westphalia coal 
measure

None Netherlands, 
United Kingdom

150rfCu0006, 
Baltic Basin

Subaerial volcanic 
rocks—None
Red beds— 
Rotliegend

None Baltica craton and 
Westphalian coal 
measures

None Lithuania, Poland, 
Russia

150rfCu0007,  
Jutland Peninsula 

Subaerial volcanic 
rocks—Rotliegend
Red beds— 
Rotliegend

None Westphalian coal 
measure and  
Baltica craton

Rote Fäule is 
mapped only near 
Rügen Island, Ger-
many, but copper 
is not enriched in 
adjacent rocks

Denmark, Germany

Assessed quantitatively

150rfCu0002,  
Hessian Depression

Subaerial volcanic 
rocks—Rotliegend
Red beds— 
Rotliegend 

Saale Basin Variscan crystalline 
basement

Elongated area with 
elevated zinc

Germany

150rfCu0001,  
Hercynian-
Thuringian Basin

Subaerial volcanic 
rocks—Rotliegend 
Red beds— 
Rotliegend

Saale Basin Variscan crystalline 
basement

Several prospective 
areas with copper-
rich margins along 
areas of Rote Fäule; 
numerous basement 
highs

Germany

150rfCu0005, 
Spremberg-Witten-
berg

Subaerial volcanic 
rocks—Rotliegend
Red beds— 
Rotliegend

Barnum and North 
Sudetic Basins

Variscan crystalline 
basement

Two prospective ar-
eas where copper-
rich margins are 
present along a 
large area of Rote 
Fäule 

Germany

150rfCu0004,  
Dolny Śląsk 
(Lower Silesia)

Subaerial volcanic 
rocks—Rotliegend
Red beds— 
Rotliegend

North Sudetic 
and Fore-Sudetic 
Basins

Variscan crystalline 
basement

Many prospective 
areas defined by 
copper-rich zones 
adjacent to Rote 
Fäule and areas 
with copper surface 
density greater than 
35 kilograms per 
square meter

Poland
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sources and migration events (Gaupp and others, 1993; 
Schöner and others, 2008). The fluids include waters associ-
ated with the deposition of the Rotliegend sediments, as well 
as waters derived from underlying and overlying sedimentary 
units. The waters from outside the Rotliegend sandstones 
have profoundly affected the diagenetic mineral suites that are 
developed.

Where the Rotliegend sandstones are not affected by 
other fluids, early formed cements reflecting early to shallow 
burial diagenetic processes are preserved down to maximum 
burial depths (Schöner and Gaupp, 2005; Schöner and others, 
2008). Near-surface fluids in the Rotliegend sediments were 
oxidizing meteoric waters. Soon after deposition, diagenetic 
processes included precipitation of hematite on the surfaces 
of detrital grains, adhesion of detrital clays to grains as grain 
coatings, and formation of minor clay minerals that form 
bridges across pore space in the sediments (pore-bridging 
clay) and clay minerals that form a matrix that fill pore space 
(Hillier and others, 1996; Amthor and Okkerman, 1998; 
Maliszewska and others, 1998).

In northwest Europe where the Rotliegend is underlain 
by Carboniferous Coal Measures and the top seal is formed 
by basal Zechstein anhydrites and salt, the diagenetic min-
eral suites of Rotliegend sandstones record the infiltration of 
acidic, reducing pore fluids derived from the decomposition 
of organic matter during burial of Carboniferous source rocks; 
this is reflected by the methane-enriched natural gas composi-
tions in areas underlain by Westphalian coal measures (fig. 38; 
Luders and others, 2005; Schöner and Gaupp, 2005; Schöner 
and others, 2008; Gaupp and Okkerman, 2011). Permissive 
tracts underlain by Westphalian Coal Measures (150rfCu0003, 
North Sea) are not considered prospective because the dia-
genetic fluids moving through the Rotliegend beds appear 
to have had a reduced composition. This is consistent with 
early observations that the highest concentrations of metal are 
limited to the southern edge of the Southern Permian Basin 
(SPB), where Rotliegend beds lie on Variscan crust (Richter, 
1941; Rentzsch and Franzke, 1997).

Fluid Flow

The prospectivity for a mineral deposit is greater if geo-
logic elements that allow, focus, and then impede fluid move-
ment can be identified. A flow system for transport of copper 
from source rocks to host rocks by sedimentary brines must 
have existed for all SSC-type deposits. The brines are thought 
to move upward toward a hydrologic seal. One process that 
could cause the upward and lateral movement of the pore flu-
ids towards and in the more permeable layers is the increase in 
the pressure gradient above the hydrostatic gradient (Muchez 
and Sintubin, 2002). Other processes could include tectoni-
cally induced and gravity-driven groundwater flow; therefore, 
various types of flow systems and hydrologic drivers can act 
as transport paths, but aquifers, at the time of mineralization, 
would have been confined so that brines migrated stratigraphi-
cally upward. Transport and (or) migration of copper must 

occur under artesian heads (by confined aquifer flow), because 
in almost all cases where it has been possible to determine, the 
zoning and paragenesis indicate that copper-rich, hematite-
stable brines have entered the host rocks from below. Syn-
sedimentary and postdepositional faults were probably crucial 
for many systems in providing focused cross-stratal fluid flow 
(Blundell and others, 2003; Hitzman and others, 2005).

Most reduced-facies copper deposits appear to have 
formed on basin edges or where irregularities in the geometry 
of the basin focused fluid flow through the red-bed package 
and upward into the host beds. Such focusing could be due 
to thinning of the red-bed sequence on a basin margin, faults, 
permeability contrasts within specific sedimentary units, and 
paleotopography within the basin itself (for example, base-
ment highs, and anticlines).

For the Kupferschiefer, numerous authors have noted 
the relation between mineralization and structure. In particu-
lar, Rentzsch and Franzke (1997) observed a spatial relation 
between metal-bearing Zechstein and lower Permian structural 
basins, such as the Saale Basin. Permissive tracts that overlie 
Rotliegend basins are considered much more prospective than 
those that do not.

Estimate of the Number of Undiscovered 
Deposits

In January 2010, numbers of undiscovered deposits were 
estimated by an expert panel (appendix A). After a discussion 
of the geology of the area and the deposit models, assessment 
team members made separate, subjective estimates of the 
numbers of undiscovered deposits. Estimators were asked 
for the least number of deposits of a given type that they 
believed could be present at three specified levels of certainty 
(90 percent, 50 percent, and 10 percent). For example, on the 
basis of all available data, a team member might estimate that 
there is a 90-percent chance of 1 or more, a 50-percent chance 
of 5 or more, and a 10-percent chance of 10 or more undis-
covered deposits occurring in a given permissive tract. Each 
person made initial estimates without sharing their results until 
everyone was finished; then the results were compiled and 
discussed. This discussion is crucial because it almost always 
reveals information or insight not held by all of the panelists. 
As a result of the discussion, the individual scores were 
adjusted and a single estimate was selected for the simula-
tion process for each tract. The final estimate of undiscovered 
deposits reflects both uncertainty in what could exist and the 
favorability of the tract (Singer, 1993). Preliminary assessment 
results were presented to an internal USGS review panel. In 
addition to hearing presentations, this review panel had access 
to all available data and could address technical questions to 
the assessment team. The panel evaluated the assessment and 
provided written comments that were addressed during the 
preparation of this report.

Final team estimates of the numbers of undiscovered 
deposits in each assessed tract are summarized in table 10, 
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together with statistics that describe mean expected numbers 
of undiscovered deposits, the standard deviation and coef-
ficient of variation within the estimate, and the number of 
known deposits. Within the Dolny Śląsk (Lower Silesia) tract 
(150rfCu0004), with 3 known deposits, a mean of 28 undis-
covered reduced-facies deposits was predicted to a depth of 
2.5 km. Within the Hessian depression tract (150rfCu0002), 
having 1 known deposit, a mean of 4 undiscovered deposits 
was estimated. A mean of 3 undiscovered deposits was 
predicted in the Spremberg-Wittenburg tract (150rfCu0005), 
which contains 2 known deposits. Finally, a mean of 1 undis-
covered deposit was estimated for the Hercynian-Thüringian 
Basin tract (150rfCu0001), with 4 known deposits.

Three of the areas with permissive rocks were not 
assessed quantitatively even though the lithostratigraphic set-
ting characteristic of reduced-facies copper deposits is present. 
These areas do not overlie Rotliegend depocenters, and the 
only potential copper sources for these tracts are the Rotlieg-
end red beds; Permian volcanic rocks are not mapped in these 
assessment areas. The North Sea tract (150rfCu0003) overlies 
part of the Variscan foreland basin that contains extensive 
Westphalian coal deposits. Expulsion of reduced fluids from 
these Carboniferous rocks could have flushed the Rotliegend 
reservoir and displaced any fluids that could have been capa-
ble of carrying copper in solution. Mineral-zonation maps for 
the area northeast of the Tornquist-Teisseyre Zone do not show 
evidence for interaction of the Kupferschiefer with oxidized 
ore fluids (tract 150rfCu0006, Baltic Basin). However, one of 

these three tracts deserves some attention. The permissive tract 
in the Jutland Peninsula area (150rfCu0007) has a Rote Fäule 
zone indicating that oxidizing brine migrated and altered the 
host interval. However, the data are not sufficient to say that 
the brine contained important amounts of copper.

Probabilistic Assessment Simulation Results

Probable amounts of undiscovered resources for the tracts 
were estimated by combining consensus estimates for num-
bers of undiscovered deposits with the SSC models (Zientek, 
Hayes, and Taylor, 2013) using the EMINERS program 
(Root and others, 1992; Duval, 2012). Simulation results are 
reported at selected quantile levels, together with the mean 
expected amount of metal, the probability of the mean, and the 
probability of no deposits being present. The amount of metal 
reported at each quantile represents the least amount of metal 
expected. Results of the Monte Carlo simulation are shown 
as cumulative frequency plots (fig. 39) and summarized in 
table 11.

All of the assessed tracts contain known mineral depos-
its with identified resources. With the exception of tract 
150rfCu0001, Hercynian-Thuringian Basin, the assessed tracts 
have more estimated undiscovered deposits than known depos-
its. However, by far the largest amount of undiscovered copper 
is likely in tract 150rfCu0004, Dolny Śląsk (Lower Silesia).

Table 10.  Undiscovered deposit estimates, deposit numbers, and tract area for the Kupferschiefer in the Southern Permian Basin, 
Germany and Poland.

[NXX, Estimated number of deposits associated with the xxth percentile; Nund, expected number of undiscovered deposits; s, standard deviation; Cv%, coefficient 
of variance; Nknown, number of known deposits in the tract that are included in the grade and tonnage model; Ntotal, total of expected number of deposits plus 
known deposits; tract area, area of permissive tract in square kilometers. Nund, s, and Cv% are calculated using a regression equation (Singer and Menzie, 2005)]

Tract
Consensus undiscovered deposit estimates Summary statistics Tract area 

(km2)N90 N50 N10 N05 N01 Nund s Cv% Nknown Ntotal

150rfCu0002,  
Hessian Depression

1 3 10 10 10 4.4 3.4 77 1 5.4 38,200

150rfCu0001,  
Hercynian-
Thuringian Basin

0 0 3 7 10 1.3 2.4 190 4 5.3 18,300

150rfCu0004, 
Dolny Śląsk (Lower 
Silesia)

12 25 50 50 50 28 14 50 3 31 18,700

150rfCu0005,  
Spremberg- 
Wittenberg

1 3 6 6 6 3.2 1.9 58 2 5.2 6,100
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Figure 39.  Cumulative frequency distribution plots showing the results of Monte Carlo computer simulation of 
undiscovered silver and copper resources for tracts in Germany and Poland—(A) 150rfCu0001, Hercynian-Thüringian 
Basin; (B) 150rfCu0002, Hessian Depression; (C) 150rfCu0004, Dolny Śląsk (Lower Silesia); and (D) 150rfCu0005, 
Spremberg-Wittenberg. Ag, silver; Cu, copper; k, thousand; M, million; B, billion.
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Gaussian Geostatistical Simulation

Under the classification system used in Poland, mineral 
resource categories have specific guidelines for sampling 
density (for example, Jakubiak and Smakowski, 1994). For 
stratiform deposits such as hard coal, sapropel, and bitumi-
nous shale, the minimum distance between observation points 
is 3 to 4 km for the resource to be in the C2 category, which 
is roughly equivalent to inferred resources in the CRIRSCO 
standards (Committee for Mineral Reserves International 
Reporting Standards, 2006). KGHM drills copper deposits on a 
0.5- to 1.5-km grid, to obtain the degree of confidence required 
for the C1 category (table 12; Bartlett and others, 2013). The 
data for known resources of SSC deposits in table 4 meet these 
sampling requirements.

Drill data exist for areas outside of the area where the 
sampling density is sufficient to formally assign resources 
to categories C2 or higher. In this situation, probabilistic 
estimates can be made for undiscovered mineral resources 

in incompletely explored extensions of large, stratabound 
deposits if appropriate data are available to calculate metal 
surface density.

For this study, geostatistical simulation techniques are 
used to probabilistically estimate the amount of undiscovered 
metal in Poland, where copper surface density (CSD) infor-
mation is available for drill holes. Copper surface-density 
data are available for continuously sampled profiles for about 
1,500 drill holes throughout the country, including more than 
640 drill holes within mine lease areas (Oszczepalski and 
Speczik, 2011, 2012). Drill-hole locations and CSD infor-
mation were derived from unpublished maps provided by 
PGI and the published metallogenic atlas (Oszczepalski and 
Rydzewski, 1997b).

A variety of techniques can be used to create a continuous 
(predictive) surface of metal density from point values (for 
example, drill holes). In the 1930s, contour maps, likely drawn 
by hand, were used to represent the metal-density surface. 
Recently, both deterministic and geostatistical interpolation 

Table 11.  Results of Monte Carlo simulations of undiscovered resources for the Kupferschiefer in the Southern Permian Basin, 
Germany and Poland.

Tract name
Probability of at least the indicated amount Probability of

0.95 0.9 0.5 0.1 0.05 Mean
Mean or 
greater

None

Undiscovered resources of copper, in metric tons

150rfCu0001, Hercynian-
Thuringian Basin

0 0 0 13,000,000 25,000,000 4,200,000 0.17 0.57

150rfCu0002, Hessian  
Depression

0 60,000 5,700,000 42,000,000 62,000,000 15,000,000 0.32 0.07

150rfCu0004, Dolny 
Śląsk (Lower Silesia)

7,200,000 17,000,000 84,000,000 190,000,000 230,000,000 96,000,000 0.44 0.01

150rfCu0005,  
Spremberg-Wittenberg

0 65,000 3,300,000 30,000,000 48,000,000 11,000,000 0.30 0.07

Undiscovered resources of silver, in metric tons

150rfCu0001, Hercynian-
Thuringian Basin

0 0 0 3,900 18,000 6,000 0.08 0.72

150rfCu0002, Hessian  
Depression

0 0 830 44,000 110,000 20,000 0.14 0.29

150rfCu0004, Dolny 
Śląsk (Lower Silesia)

780 3,300 58,000 410,000 550,000 140,000 0.32 0.02

150rfCu0005,  
Spremberg-Wittenberg

0 0 510 26,000 94,000 16,000 0.12 0.30

Rock in undiscovered deposits, in million metric tons

150rfCu0001, Hercynian-
Thuringian Basin

0 0 0 700 1,400 250 0.17 0.57

150rfCu0002, Hessian  
Depression

0 5 360 2,500 3,700 820 0.30 0.07

150rfCu0004, Dolny 
Śląsk (Lower Silesia)

450 1,000 4,800 11,000 13,000 5,500 0.43 0.01

150rfCu0005,  
Spremberg-Wittenberg

0 5 220 1,600 3,100 630 0.30 0.07



66    Assessment of Undiscovered Copper Resources Associated with the Permian Kupferschiefer

tools have been used to represent metal surface-density sur-
faces. Deterministic interpolation techniques create surfaces 
from measured points, based on either the extent of similarity 
or the degree of smoothing. Geostatistical interpolation tech-
niques (kriging) use the statistical properties of the measured 
points when creating the surface. For example, PGI has used 
both deterministic (inverse distance weighted) and geostatisti-
cal (kriging) techniques. These techniques are locally accurate 
and produce a smooth surface appropriate for visualizing 
trends.

Uncertainty is a characteristic of undiscovered resource 
estimation, and forecasts should be accompanied by measures 
of uncertainty. Simulation techniques assess uncertainty by 
generating many model realizations that represent a range 
of plausible possibilities that honor the known data and their 
spatial variability (Vann and others, 2002; Esri, 2013a, b). Any 
individual simulation is a poorer estimate than kriging. How-
ever, averaging a set of simulations can yield a good estimate 
that tends toward the prediction generated using kriging.

Gaussian Geostatistical Simulations is a tool in the 
Geostatistical Extension for ArcGIS version 10 (Esri, 2013a, 
b, c). The tool uses Gaussian geostatistical simulation (GGS), 
which is based on the multivariate Gaussian random function 
model. The parameters of the conditional distribution func-
tion are straightforward to infer and the mean and variance are 
estimated by kriging (Vann and others, 2002). The Gaussian 
Geostatistical Simulations tool in ArcGIS accepts any simple 
kriging model as input. In ArcGIS, GGSs work by creating 
a grid of randomly assigned values drawn from a standard 
normal distribution. The covariance model (from the semi-
variogram specified in the input simple kriging layer) is then 
applied to the raster, ensuring that raster values conform to 
the spatial structure found in the input dataset. The resulting 
raster constitutes one unconditional realization, and many 

more realizations can be produced using subsequent rasters of 
normally distributed values (Esri, 2013a, b, c).

A workflow for GGS involves preparing the data, devel-
oping a simple kriging model, running the simulation to create 
the realizations, and postprocessing the results (Esri, 2013a, 
b, c). To use this simulation technique, the data, or a transfor-
mation of the data, is assumed to have a Gaussian (normal) 
distribution. Copper surface-density values were positively 
skewed; therefore, the copper surface-density data were log 
transformed to approximate a normal distribution. In addition, 
declustering22 was done to obtain a representative histogram 
from clustered data. Drill holes are concentrated in the mine 
lease areas and were randomly sampled so that the density of 
holes in the GGS simulation was similar to that of the rest of 
the study area.

A simple kriged surface was generated using the ArcGIS 
Geostatistical Extension. The technique also assumes that the 
data are stationary; that is, the mean, variance, and spatial 
structure (semivariogram) do not change over the spatial 
domain of the data (Esri, 2013a, b, c). When creating the 
input surface, a first-order trend removal was performed on 
the data to ensure that the mean is stationary over the spatial 
domain. Next, a normal-score transformation, was applied to 
the log-transformed copper surface-density data. An iterative 
process was used to model the semivariogram and covariance. 
Lag size and the number of lags were varied and the resulting 
prediction errors were examined. After a number of trials, a 
semivariogram was selected (fig. 40) and an input surface was 
created to use in the simulation (fig. 41).

22Declustering is a process applied to data that have been preferentially 
sampled with higher densities of points in some areas so that the sample of 
points properly reflects the histogram of the whole population.

Table 12.  Definitions of mineral resource categories as used by Kombinat Górniczo-Hutniczy Miedzi Polska Miedź S.A. 
(KGHM) in the Legnica-Głogów Copper Belt Area, Southern Permian Basin, Poland.

[Information on drilling grid for category C2 and the definition of category D from Jakubiak and Smakowski (1994); CRIRSCO, Committee for  
Mineral Reserves International Reporting Standards (2006); km, kilometers]

Category Confidence Continuity
Corresponding 

CRIRSCO category
Drilling grid

B High The quantity and quality of information 
confirms the continuity of the geological 
body and its borders

Measured mineral 
resources

Requires mining 
development

C1 High The data points are, however, too scarce 
to confirm the continuity of the geological 
body

Indicated mineral 
resources

1.5 by 1.5 km

C2 Low The geological indications and evidence 
of which have not been verified

Inferred mineral 
resources

3 by 3 km

D1-D2 Very low The estimate is based on indirect indica-
tions, showings, and isolated sampling. 
D1 and D2 are equivalent to categories P1 
and P2, prognostic resources, as used in 
the former Soviet Union

Not defined as a 
resource category
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The simulation consisted of 100 realizations. The input 
data used to fit the semivariogram was also used to condition 
the realizations; this ensures that the simulated values honor 
the input data values and that, on average, the kriged predic-
tions are replicated (Esri, 2013a, b, c). The output cell size was 
set to 1,000 m. The permissive tract for the study area served 
as a bounding polygon that limited the extent of the analysis. 
The permissive tract included polygons for those areas with 
identified mineral inventory so that simulation results could be 
tabulated separately for those areas. All the bounded uncondi-
tional rasters were saved.

An additional raster was also created that specified the 
percentage of simulated values that exceeded a threshold for 
each cell (fig. 42). In this study, the threshold value was set to 
1.544, which corresponds to a copper surface-density value 
of 35 kg/m2. This is the cutoff value used by PGI when they 
estimated prognostic copper resources of the same area. Real-
izations were checked to confirm that the output values, their 
spatial patterns, and locations were reasonable.

Using polygons that subdivide the permissive tract into 
areas inside and outside of mine concession areas, the attribute 
values for log(copper surface density), raster name, and poly-
gon number are extracted for each raster and output to a single 
table. The table is imported into statistical software and the 
contained copper associated with each cell is computed using 
copper surface density and cell area. Cells with copper surface 
density less than 35 kg/m2 are excluded from the analysis and 
summary tables are created that sum the contained copper 
within each polygon for each of the realizations. Summary 
statistics are then calculated for each polygon (table 13).

Our estimate of the contained copper resource for the 
Lubin-Sieroszowice Mine area is about 72 Mt. This includes 
the published mineral inventory and an estimate of the amount 
of copper that has been produced. Median and mean contained 
copper estimated from the simulation is 83 and 82 million 
tons, respectively. The 90th and 10th quantiles are 69 and 
94 Mt. The mean and median values from the simulation are 
within 15 percent of what is thought to be present from pub-
lished mineral inventory and production data.

Simulation results indicate a mean value of 63 Mt of 
undiscovered copper in the tract, outside the mine lease areas. 
This compares with a mean estimate of 96 Mt estimated 
using the three-part form of assessment. The mean simulation 
results are lower but the form of the distribution is different. 
For example, at the 95th percentile, the simulation indicates at 
least 27 Mt may be present compared to only 7.6 million tons 
for the estimate from the three-part form of assessment.

The probability threshold map (fig. 42) shows a zone 
of mineralization extending from the current mine lease 
areas northward into the Kotla, Nowa Sól 17/2011/p, and 
Wilcze 67/2011/p concessions and includes the Kulów and 
Wilcze prospective areas of Oszczepalski and Speczik (2012) 
(fig. 30). A second area of mineralization north of the city of 
Zielona Gora, covered by the Mozów-1 15/2011/p concession, 
corresponds to the Mozów prospective area of Oszczepalski 
and Speczik (2012) (fig. 30). A third area of mineralization 

occurs southwest of the city of Kalisz and underlies the Sulmi-
erzyce 18/2011/p and Kalisz 14/2012/p concessions (fig. 30). 
It indicates a broad zone of mineralization that occurs in this 
tract and extends to the northeast into rocks that are below our 
assessment depth 2.5 km; it corresponds to the Sulmierzyce 
and Florentyna prospective areas of Oszczepalski and Speczik 
(2012) (fig. 30).

Discussion
The Kupferschiefer deposits in Germany are world 

famous. In 800 years of mining, about 2.6 Mt of copper were 
produced from these deposits; geologic research on these 
deposits played a significant role in the scientific debates on 
the genesis of sediment-hosted stratabound copper (SSC) 
deposits. The tracts associated with the deposits in central 
Germany (150rfCu0001, Hercynian-Thuringian Basin and 
150rfCu0002, Hessian Depression) have been well explored; 
less than one Mt of copper remains in identified deposits. The 
USGS Global Mineral Resource Assessment Team forecasts 
that copper remains to be discovered in parts of the tract that 
are likely below 1 km depth (table 11).

Assessments by PGI and this study forecast large 
amounts of undiscovered copper in the Kupferschiefer in the 
Fore-Sudetic Monocline in Poland and Lausitz Syncline in 
Germany (150rfCu0004, Dolny Śląsk (Lower Silesia) and 
150rfCu0005, Spremberg-Wittenberg; table 14). Since 1958, 
about 15 Mt of copper have been produced, and there is a 
remaining resource of about 30 Mt of copper. The sum of 
mean estimates of the amount of undiscovered copper in tracts 
150rfCu0004, Dolny Śląsk (Lower Silesia), and 150rfCu0005, 
Spremberg-Wittenberg, using the 3-part form of assessment 
to depths of 2.5 km are about 110 Mt (table 15). Most of 
the undiscovered resource in southwestern Poland will be 
below depths of 1.5 km, where virgin rock temperatures will 
exceed 50 ºC. Development of these resources will require 
sophisticated mining methods requiring refrigeration and 
additional ground support that will add to the mining costs. 
In-situ leaching could possibly be used to extract copper from 
the more porous and permeable Rotliegend strata in deep ore 
bodies. However, this would require development of new 
technologies.

To aggregate the probabilistic assessment results from 
the 4 tracts in Germany and Poland into a single, probabilistic 
estimate, the degree of association or dependency between 
these geologically based permissive tracts must be considered 
(Schuenemeyer, 2003, 2005; Schuenemeyer and others, 
2011). Dependencies between probabilistic distributions do 
not affect the mean of the distributions. Therefore, the mean 
of an aggregated distribution is the sum of the means of the 
individual distributions. Geologic dependencies between 
tracts can affect the spread or uncertainty of the aggregated 
probability distribution. Independence between tracts implies 
that the occurrence of one event (such as a deposit) in a tract 
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makes it neither more nor less probable that the other event 
(deposit) occurs in another tract. For dependence, events, 
such as number of deposits, in one tract predict the events in 
a second. An assumption of independence between tracts will 
yield uncertainty estimates that are unrealistically small if the 
predicted events (deposits) are not independent. Conversely, 
an assumption of total dependence will yield estimates of 
uncertainty that often are unrealistically large if the predicted 
events (deposits) are dependent.

We use the algorithm presented by Schuenemeyer and 
others (2011) in which user-specified estimates of correlation 
between tracts are used to aggregate uncertainty where some 
degree of dependence between tracts is likely and can be 
estimated. For this study, dependency relations among tracts 
are based on shared components in ore-forming systems. For 
example, the permissive tracts may or may not share the same 
sources of copper and oxidized brines, reservoir-facies host 
rocks, and stratigraphic and (or) structural traps.

In total, the mean aggregated estimate of undiscovered 
copper in all four assessed tracts is 130 Mt (table 16 and 
fig. 43). The estimated median is about 120 Mt. The values 
of the other percentiles depend on assumptions made about 
dependence among tracts (Schuenemeyer and others, 2011). 
Assuming partial correlation, the tracts could contain as little 
as 14 Mt of copper at the 95th quantile or as much as 270 Mt 
at the 5th quantile.

The data available for Poland made it possible to com-
pare undiscovered resource estimates made by the PGI and 
the USGS using different methods. The PGI used determin-
istic interpolation methods to estimate 69.5 Mt of copper to 
a depth of 2,000 m (Oszczepalski and Speczik, 2011, 2012). 
The mean values obtained by the USGS to a depth of 2,500 m 
were 62 and 97 Mt, using Gaussian geostatistical simulation 
and the three-part form of assessment, respectively. The results 
are remarkably similar. The main difference is that the USGS 
methods give some estimate of the uncertainty associated with 

Table 13.  Selected results of Gaussian geostatistical simulation summarized by features in permissive tract 150rfCu0004, Dolny Śląsk 
(Lower Silesia), Poland.

[All results are contained copper, in metric tons. Identified copper is production plus remaining resources from table 2. Q, quantile; n.d., no data]

Area
Identified 

copper
Mean

Median  
(Q 50)

Q 95 Q 90 Q 75 Q 25 Q 10 Q 05

Undiscovered resources

Most of 
permis-
sive tract, 
excluding 
mining 
areas

n.d. 62,000,000 57,000,000 27,000,000 31,000,000 44,000,000 79,000,000 93,000,000 110,000,000

Small 
tract out-
lier to the 
north 

n.d. 540,000 240,000 37,000 41,000 89,000 660,000 1,600,000 2,300,000

Small 
tract out- 
lier, east of 
Wroclaw

n.d. 190,000 190,000 37,000 37,000 37,000 340,000 340,000 340,000

Identified resources in permissive tract

Lubin-
Siero-
szowice 
mining 
area

72,000,000 82,000,000 83,000,000 66,000,000 69,000,000 76,000,000 89,000,000 94,000,000 98,000,000

Konrad-
Warto-
wice 
mining 
area

1,600,000 1,900,000 1,600,000 210,000 350,000 840,000 2,800,000 3,900,000 4,800,000

Nowy 
Kosciol-
Lena min-
ing area

220,000 380,000 240,000 37,000 50,000 83,000 620,000 1,100,000 1,400,000
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Figure 43.  Histograms comparing probabilistic estimates of undiscovered copper for the Kupferschiefer 
reduced-facies copper permissive tracts—Germany and Poland.

Table 14.  Selected simulation results of undiscovered copper resources obtained using the three-part form of assessment and 
Gaussian geostatistical simulation for permissive tract 150rfCu0004, Dolny Śląsk (Lower Silesia), Poland.

[GGS, Gaussian geostatistical simulation; n.d., no data]

Tract name
Probability of at least the indicated amount of copper (metric tons) Probability of

0.95 0.9 0.5 0.1 0.05 Mean
Mean or 
greater

None

Dolny Śląsk (Lower 
Silesia), GGS results

27,000,000 31,000,000 57,000,000 93,000,000 110,000,000 62,000,000 n.d. n.d.

Dolny Śląsk (Lower 
Silesia), three-part 
assessment results

7,600,000 18,000,000 84,000,000 190,000,000 230,000,000 97,000,000 0.43 0.01
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the estimate. The USGS assessment could not have been done 
without the data provided by PGI.

Miners and scientists are emphatic about the associa-
tion of copper ore with the contact between oxidized (Rote 
Fäule) and reduced facies rocks of the Kupferschiefer. This 
association leads some scientists to propose that the largest 
areas underlain by Rote Fäule alteration are associated with 
the largest ore deposits (fig. 44). Unfortunately, this is not 
always true. The mineral-zonation map shows a large area 
of Rote Fäule facies that extend from Germany into Poland 
(fig. 8). The large deposits in Poland concentrated along the 
eastern margin of the altered region (150rfCu0004, Dolny 
Śląsk (Lower Silesia)), but the western side, in Germany, 
has narrow zones of copper enrichment (tract 150rfCu0005, 
Spremberg-Wittenberg). The large area of Rote Fäule underly-
ing the coastal areas of northern Germany and northwestern 

Poland (tract 150rfCu0007, Jutland Peninsula) also has 
insignificant zones of copper enrichment. The Rote Fäule area 
along the German-Polish border overlies different Rotliegend 
basins—the Barnim Basin to the west and the North Sudetic 
and Fore-Sudetic Basins to the east. Perhaps the difference in 
copper enrichment may be related to different copper source 
rocks and evolutionary paths for these basins. The area of Rote 
Fäule overlying the Barnim Basin is also characterized by the 
presence of numerous salt diapirs, whereas few are mapped in 
the area overlying the North Sudetic and Fore-Sudetic Basins. 
Perhaps the integrity of the trap and seal needed to form cop-
per deposits was adversely affected by salt tectonics. Under-
standing the relation between the size of areas of Rote Fäule 
and the distribution of world-class deposits is warranted and 
could be highly valuable. 

Table 15.  Selected simulation results of undiscovered copper resources compared with known resources, Southern Permian Basin, 
Germany and Poland.

[GGS, Gaussian geostatistical simulation; km2, square kilometers]

Tract name Country Known deposits
Tract area

(km2)

Known copper 
resources

(metric tons)

Mean estimate  
of undiscovered 

copper resources
(metric tons)

Median estimate  
of undiscovered 

copper resources
(metric tons)

150rfCu0001, Hercynian-
Thuringian Basin

Germany Mansfeld; Sang-
erhausen

18,300 2,600,000 5,500,000 500,000

150rfCu0002, Hessian De-
pression

Germany Richelsdorf 38,200 420,000 15,000,000 6,000,000

150rfCu0004, Dolny Śląsk 
(Lower Silesia), three-part 
assessment results

Poland Konrad-
Grodziec-
Wartowice; 
Lena-Nowy 
Kosciol; Lubin-
Sieroszowice

18,700 74,000,000 97,000,000 84,000,000

150rfCu0004, Dolny Śląsk 
(Lower Silesia), GGS results

62,000,000 57,000,000

150rfCu0005, Spremberg-
Wittenberg

Germany Graustein; 
Spremberg

6,100 1,500,000 12,000,000 4,700,000

Table 16.  Aggregated assessment results for tracts permissive for reduced-facies-type sediment-hosted stratabound copper deposits 
in the Southern Permian Basin, Europe.

[The three-part form of assessment results for the tracts were used in the computation. All results are contained copper, in metric tons. Q, quantile]

Aggregation 
assumption

Mean Q 95 Q 90 Q 75 Median Q 25 Q 10 Q 5

Total  
dependence

130,000,000 11,000,000 25,000,000 58,000,000 110,000,000 180,000,000 250,000,000 300,000,000

Partial  
correlation

130,000,000 14,000,000 30,000,000 64,000,000 120,000,000 180,000,000 240,000,000 270,000,000

Complete 
independence

120,000,000 16,000,000 31,000,000 65,000,000 120,000,000 170,000,000 230,000,000 270,000,000
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Most of the literature on the three-part form of assess-
ment emphasizes that the primary source of information for 
delineating tracts is a geologic map. Mineral occurrence 
information, classified by deposit type, is used to infer the 
spatial extent of ore-forming processes (Singer and Menzie, 
2010). If we had had no more information than this, we would 
not have been able to complete an assessment of undiscovered 
copper associated with the Kupferschiefer. We required maps 
that showed the distribution of the base of Zechstein in the 
subsurface along with maps of the facies of the underlying 
Rotliegend Group. Isodepth maps were needed to constrain the 
down-dip extent of permissive rocks. To estimate undiscov-
ered resources we needed to know the spatial extent of known 
deposits and the possible extent of mineralizing systems, 
which could only be inferred from drill data and derivative 
maps. Published atlases by Ziegler (1990), Heeremans and 
Faleide (2004), Heeremans and others (2004), and Doornenbal 
and Stevenson (2010) and unpublished information provided 
by PGI provided most of the information needed for 
the assessment.

Considerations for Users of this 
Assessment

This mineral resource assessment provides maps that 
show where undiscovered deposits may exist and gives esti-
mates of how much resource might be present in these areas; 
however, it does not specifically address the likelihood of 
future development. This study does not evaluate how much of 
the undiscovered resource is likely to be found, how much it 
would cost to find, and, if found, what part would be economic 
under various conditions. Current research on economic filters 
is providing some tools that can be used to estimate how 
much of an undiscovered mineral resource may be economic 
(Robinson and Menzie, 2012), but this technique has not been 
applied to results of this study.

Permissive tracts are based on geology, irrespective of 
current land-use conditions. Therefore, tracts may include 
lands that already have been developed for other uses or 
have been withdrawn from mineral development as protected 
areas. The tracts are intended to be displayed at a scale of 
1:1,000,000, even though higher resolution information was 
used in the compilations.

USGS Global Mineral Resource Assessment products 
represent a synthesis of current, readily available information. 
This assessment is based on the deposit models, maps, and 
data represented in this report. Different datasets would result 
in a different assessment.
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Introduction

Eight spatial databases provide data for use in an assess-
ment of undiscovered sediment-hosted copper resources in the 
Southern Permian Basin (SPB) of Europe. The spatial data-
bases are presented as Esri shapefiles (.shp), which contain 
spatial and descriptive data for deposits and prospects, permis-
sive tracts, mine shafts and tunnels, ore bodies, mineral zones, 
copper surface density, mine concessions, and ground distur-
bance sites. Also included are .xml metadata files, an Excel file 
of references cited, and a brief descriptive ASCII text file. This 
information can be downloaded from the USGS Web site as 
zipped file GIS_SIR2010-5090-U.zip. These databases can be 
queried in a geographic information system (GIS) to portray 
the distribution, geologic setting, and resource potential of 
copper deposits and to model grade and resource tonnage in 
the region.

Sedimentary Copper Deposits and Prospects, 
Southern Permian Basin of Europe 
(Kupferschiefer_deposits_prospects.shp)

This dataset includes points that represent sedimentary 
copper deposits and prospects associated with sedimentary 
rocks in the SPB of Europe. Its purpose is to document the 
locations of deposits and prospects that will be used as part 
of the process to estimate undiscovered mineral resource 
endowments.

This dataset was created by combining preexisting 
deposit and prospect point files (about 25 percent of the 
records) and by manually digitizing points from georeferenced 
maps (the remaining 75 percent). A deposit and prospect point 
file from Cox and others (2003) and a deposit and prospect 
point file from Kirkham and others (2003) were combined 
into one file. Duplicate entries were removed and the attribute 
table was normalized into a table structure similar to Cox and 
others (2003) (table B1). The points were compared against 
georeferenced geologic and mineral occurrence maps to 
verify the positional accuracy of each point. Point locations 
were corrected using the highest resolution data available. 
For example, a 1:100,000-scale map took precedence over a 
1:1,000,000-scale map for the site location. The points were 
attributed using information derived from georeferenced maps 
and reports. Attribute fields and field definitions are shown in 
table B1.

Permissive Tracts for Reduced-Facies-Type 
Copper Deposits, Southern Permian Basin of 
Europe (Kupferschiefer_permissive_tracts.shp)

This dataset includes polygons that represent permissive 
tracts for reduced-facies-type copper deposits in the SPB 
of Europe. Its purpose is to delineate where undiscovered 
reduced-facies-type copper deposits could occur within the 
upper 2 km of the Earth’s crust.

Process steps for the creation of the tracts are discussed in 
the “Mineral Resource Assessment—Delineating Permissive 
Tracts” section of this report. Attribute fields and field defini-
tions are shown in table B2.

Sedimentary Copper Mine Shafts and 
Tunnels, Southern Permian Basin of Europe 
(Kupferschiefer_shafts_tunnels.shp)

This dataset includes points that represent sedimentary 
copper mine shafts and tunnels associated with sedimentary 
rocks in the SPB of Europe. Its purpose is to document 
the locations of mine shafts and tunnels that will be used 
as part of the process to estimate undiscovered mineral 
resource endowments.

This shapefile was created by manually digitizing 
shafts and tunnels shown on georeferenced maps and Google 
Earth™. The shafts and tunnels are attributed with information 
shown in table B3, which was derived from the maps and 
reports listed in the field Ref_short.

Surface Extent of Reduced-Facies-Type Copper 
Ore Bodies, Southern Permian Basin of Europe 
(Kupferschiefer_orebodies.shp)

This dataset includes polygons that represent the surface 
extent of reduced-facies-type copper ore bodies in the SPB 
of Europe. Its purpose is to document the spatial extent of 
mineralized rock in reduced-facies-type copper deposits and 
significant prospects and to constrain estimates of mineral 
resource endowment.

This shapefile was created by manually digitizing the 
ore bodies shown on georeferenced maps. The ore bodies are 
attributed with information shown in table B4, which was 
derived from the maps and reports listed in the field Ref_short.

Appendix B. Description of Spatial Data Files

By Heather L. Parks and Michael L. Zientek
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Table B1.  Definitions of user-defined attribute fields in the shapefile Kupferschiefer_deposits_
prospects.shp.

[m, meter; ppm, parts per million; PGI, Polish Geological Institute–National Research Institute]

Field name Description

Coded_ID Coded, unique identifier assigned to permissive tract within which the 
site is located.

Tract_name Name of permissive tract in which the site is located.
Group_name Group name for sites that have been grouped together for aggregation/

modeling purposes.
Name Name of site.
Name_other Other names used for the site.
Includes Names of deposits that have been combined with the primary deposit as 

a result of the 500-m aggregation rule used for calculating grades and 
tonnages.

Type Mineral deposit type.
Subtype Sediment-hosted copper subtype.
SiteStatus Deposit, prospect, prospect—mineralized material estimated or historic 

mine. Deposit if the site has grade and tonnage. Prospect if no grade 
and tonnage values provided. Prospect—mineralized material estimated 
if it has resources forecasted by PGI.

SiteStat2 Status of the site, including miscellaneous comments regarding the sites 
status.

Latitude Latitude in decimal degrees; −90.00000 to 90.00000. Negative south of 
the equator.

Longitude Longitude in decimal degrees; −180.00000 to 180.00000. Negative 
west of the Greenwich meridian.

Code_cntry Country code (Singer and others, 2008).
Country Country in which the site is located.
State_Prov State or province in which the site is located.
Age_Ma Age in millions of years before present. Age is average for geologic 

era, period, or epoch listed.
Age_range Age of host rock in standard divisions of geologic time.
Comm_major Major commodities in decreasing order of economic importance.
Tonnage_Mt Ore tonnage in millions of metric tons; −9999 indicates no data.
Cu_pct Average copper grade in weight percent; −9999 indicates no data.
Ag_g_t Average silver grade in ppm (=grams per ton); −9999 indicates no data.
Con_Cu_t Million metric tons of contained Copper; −9999 indicates no data.
Comments Miscellaneous comments.
HostRocks Simplified lithologic description of host rocks.
Unit Geologic unit in which site is located.
Footwall Rock types of foot wall rocks.
Hangwall Rock types of hanging wall rocks.
Mineralogy Ore and gangue minerals in approximate order of abundance.
Ref_short Short reference; abbreviated citation for reference; full reference is 

provided in accompanying file, “GIS_references.xlsx.”
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Table B2.  Definitions of user-defined attribute fields in the shapefile Kupferschiefer_permissive_ 
tracts.shp.

Field name Description

Coded_ID Coded, unique identifier assigned to permissive tract.
Tract_name Informal name of permissive tract.
Unregcode Three-digit United Nations code for the region that underlies most of 

the permissive tract.
Country Country(ies) in which the permissive tract is located.
Commodity Primary commodity being assessed.
Dep_type Deposit type being assessed.
GT_model Grade-tonnage model used for the undiscovered deposit estimate.
Geology Geologic feature assessed.
Age Age of the assessed geologic feature.
Asmt_date Year assessment was conducted.
Asmt_depth Maximum depth beneath the Earth's surface used for the assessment, in 

kilometers.
Est_levels The set of percentile (probability) levels at which undiscovered deposit 

estimates were made; −9999 indicates no data.
N90 Estimated number of deposits associated with the 90th percentile 

(90-percent chance of at least the indicated number of deposits); −9999 
indicates no data.

N50 Estimated number of deposits associated with the 50th percentile 
(50-percent chance of at least the indicated number of deposits); −9999 
indicates no data.

N10 Estimated number of deposits associated with the 10th percentile 
(10-percent chance of at least the indicated number of deposits); –9999 
indicates no data.

N05 Estimated number of deposits associated with the 5th percentile 
(5-percent chance of at least the indicated number of deposits); −9999 
indicates no data.

N01 Estimated number of deposits associated with the 1st percentile 
(1-percent chance of at least the indicated number of deposits); −9999 
indicates no data.

N_expected Expected (mean) number of deposits. N_Expected = (0.233×N90) + 
(0.4×N50) + (0.225×N10) + (0.045×N05) + (0.03×N01); −9999 indi-
cates no data.

s Standard deviation. s = 0.121 − (0.237×N90) − (0.093×N50) + 
(0.183×N10) + (0.073×N05) + (0.123×N01); -9999 indicates no data.

Cv_percent Coefficient of variance, in percent. Cv = (s/N_Expected) × 100; −9999 
indicates no data.

N_known Number of known deposits in the tract; −9999 indicates no data.
N_total Total number of deposits. N_total = N_Expected + N_Known; −9999 

indicates no data.
Area_km2 Area of permissive tract, in square kilometers.
DepDensity Deposit density (total number of deposits per square kilometer). Dep-

Density = N_total/Area_km2; −9999 indicates no data.
DepDen10E5 Deposit density per 100,000 square kilometers. DepDen10E5 = Dep-

Density × 100,000; −9999 indicates no data.
Estimators Names of people on the estimation team.
Schwelle Name of basement high area.
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Mine Concessions, Southern Permian Basin of 
Europe (Kupferschiefer_mine_concessions.shp)

This dataset includes polygons that represent mine con-
cessions of the SPB of Europe. Its purpose is to document the 
locations of mine concession properties.

This shapefile was created by manually digitizing 
the mine concession areas using georeferenced maps. The 
polygons are attributed with information shown in table B7, 
which was derived from the maps listed in the field Ref_short.

Ground-Disturbance Sites, Southern Permian 
Basin of Europe (Kupferschiefer_ground_
disturbance.shp)

This dataset includes points that represent ground-disturbance 
sites in the SPB of Europe. Its purpose is to document the locations 
of ground-disturbance features that likely represent waste heaps 
around pre-Industrial Revolution mine shafts.

This shapefile was created by manually digitizing the 
ground-disturbance sites from Google Earth™. Attribute fields 
and field definitions are shown in table B8.

Table B3.  Definitions of user-defined attribute fields in the shapefile Kupferschiefer_shafts_ 
tunnels.shp.

Field name Description

Coded_ID Coded, unique identifier assigned to permissive tract within which the 
site is located.

Tract_name Name of permissive tract in which the site is located.
Name Name of site.
Feature Type of feature.
Latitude Latitude in decimal degrees; −90.00000 to 90.00000. Negative south of 

the equator.
Longitude Longitude in decimal degrees; −180.00000 to 180.00000. Negative 

west of the Greenwich meridian.
Country Country in which the site is located.
State_Prov State or province in which the site is located.
Comm_major Major commodities in decreasing order of economic importance.
Comments Miscellaneous comments.
HostRocks Simplified lithologic description of host rocks.
Ref_short Short reference; abbreviated citation for reference; full reference is 

provided in accompanying file, “GIS_references.xlsx.”

Mineral Zones, Southern Permian Basin of 
Europe (Kupferschiefer_mineral_zones.shp)

This dataset includes polygons that represent mineral 
zonation in the SPB of Europe. Its purpose is to document the 
spatial extent of epithermal mineralizing systems.

This shapefile was created by manually digitizing areas 
of mineralization from georeferenced maps. The polygons 
are attributed with information shown in table B5, which was 
derived from the maps and reports listed in the field Ref_short.

Copper Surface Density, Southern Permian 
Basin of Europe (Kupferschiefer_Cu_surface_
density.shp)

This dataset includes polygons that represent copper sur-
face density in the SPB of Europe. Its purpose is to document 
the spatial extent of copper mineralization.

This shapefile was created by manually digitizing areas 
with elevated copper surface-density amounts. The polygons 
are attributed with information shown in table B6, which was 
derived from the maps and reports listed in the field Ref_short.

Table B4.  Definitions of user-defined attribute fields in the shapefile Kupferschiefer_orebodies.shp.

Field name Description

Name Name of the ore body.
Area_km2 Area of the surface extent of the ore body in square kilometers.
Ref_short Short reference; abbreviated citation for reference; full reference is 

provided in accompanying file, GIS_references.xlsx.”
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Table B6.  Definitions of user-defined attribute fields in the shapefile Kupferschiefer_Cu_surface_
density.shp.

Field name Description

CuSurfDens Copper surface density in kilograms per square meter.

Assoc_dep Name of sediment-hosted copper deposit associated with copper sur-
face density polygon.

Area_km2 Area of copper surface density polygon in square kilometers.
Ref_short Short reference; abbreviated citation for reference; full reference is 

provided in accompanying file, “GIS_references.xlsx.”

Table B7.  Definitions of user-defined attribute fields in the shapefile Kupferschiefer_mine_ 
concessions.shp.

Field name Description

Name Name of mine concession.
Status Status of the concession—accepted or pending.
Company Name of mining company holding the concession.
Area_km2 Area of mine concession polygon in square kilometers.
Ref_short Short reference; abbreviated citation for reference; full reference is 

provided in accompanying file, “GIS_references.xlsx.”

Table B8.  Definitions of user-defined attribute fields in the shapefile Kupferschiefer_ground_
disturbance.shp.

Field name Description

Latitude Latitude in decimal degrees; –90.00000 to 90.00000. Negative south of 
the equator.

Longitude Longitude in decimal degrees; –180.00000 to 180.00000. Negative 
west of the Greenwich meridian.

Table B5.  Definitions of user-defined attribute fields in the shapefile Kupferschiefer_mineral_zones.shp.

Field name Description

Orig_descr Information associated with the mineral zone, in the original language.

Engl_descr Information associated with the mineral zone, translated into English if 
needed.

Zone1 Minerals and elements found in the zone.
Zone2 Abbreviation of minerals and elements found in the zone.
Area_km2 Area of mineral zone in square kilometers.
Ref_short Short reference; abbreviated citation for reference; full reference is 

provided in accompanying file, “GIS_references.xlsx.”
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Probability Threshold Simulation Results for 
Copper Surface Density, Southern Permian 
Basin of Europe (csdprblty)

This dataset is an outcome from Gaussian statistical 
simulation of copper surface-density values and shows the 
probability that a value in a given cell exceeds 35 kg/m2. 
The probability threshold results are used to show the spatial 
variation of copper mineralization that meets minimum 
cut-off grades.

This dataset was created using a two-part process. 
The first process step created a krig surface using the Esri 
Geostatistical Wizard in the Geostatistical Analyst tool/
extension from borehole point data. The second step used 
the Gaussian Geostatistical Simulations tool in ArcToolbox 
to generate many copper surface-density surfaces that are 
consistent with the semivariogram of the krig surface and 

the threshold dataset. The text of this report discusses the 
process in further detail under the “Gaussian Geostatistical 
Simulation” section.
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